

Scaling the CERN OpenStack cloud

Stefano Zilli

On behalf of CERN Cloud Infrastructure Team

2

CERN Private Cloud - Numbers
• Based on OpenStack Juno

• Spans between 2 datacentres

• 4700 hypervisors
• 120000 cores

• 11000 VMs

• 1500 users

• 1800 projects

3

CERN Private Cloud - Numbers

4

Nova Cells

5

Nova Cells
• What are cells?

• Groups of hosts configured
as a tree

• Top level cell runs API
services

• Child cells run compute
nodes

• Every cell has its own
database and RabbitMQ

6

Nova Cells

• Why cells?

• Expand our Cloud adding new cells

• Single entry point for all our resources

• Cloud architecture hidden to the user

• Used by big companies (Rackspace,
eBay/Paypal, GoDaddy, Walmart)

• It’s becoming the default configuration

Scheduler

8

Scheduler

• Two schedulers

• Cell scheduler

• Top cell level

• Decides the cell

• Node scheduler

• Compute cells

• Decides the hypervisor

Cell

scheduler

Node

scheduler

Node

scheduler

H

V

H

V

H

V

H

V

H

V

9

Cell Scheduler

• Possible to associate projects to cells

• Chooses the most appropriate cell depending
on free resources

• By default not datacentre aware
• Improved to make it datacentre aware

• Cells mapped to a datacentre

• Possible to specify a datacentre

10

Node Scheduler

• Time to schedule VMs increases with the

number of nodes

• Performance benefits with small cells (~200 nodes)

• Schedulers update the database only when the

target hypervisor is decided

• With many simultaneous requests and multiple

scheduler failures due to race conditions

11

Controllers

12

Controllers

• What is a controller?

• Node that runs the OpenStack services to
manage the Cloud (scheduling, manage
volumes, manage images, …)

• Two type of controllers

• Top cell controllers

• Child cell controllers

13

Top Cell Controllers
• Host API services

• Entry point for the users

• Need to be HA

• Problems
• Several services share the same host

• Different scaling needs

• Different update paths

• Physical machines with many idle resources

14

Top Cell Controllers
• Moved the majority of OpenStack

services to virtual machines
• Small and medium size VMs

• Freed some previously idle resources

• Services are separated
• Scaled our based on the service need

• Services updated independently

• Subset of services still on physical
machines in case of cold reboot
scenario

Child Cell Controllers
• Nova services to manage compute nodes

• Initial idea
• HA deployment

• Multiple message brokers

• Multiple cell schedulers

• Problems
• Race conditions on some nova components

• Resources barely used

16

Child Cell Controllers

• One physical node per cell

• Nova services

• RabbitMQ message broker

• Move to a distributed cell architecture

• Availability zones span between different cells

• If a cell goes down new VMs are spawned on
other cells

17

Metering

18

Metering
• Ceilometer as metering service

• Collect usage information about cloud resources

• Notifications and active polling

• Bottlenecks observed
• High amount of requests to Nova, Keystone and

Glance APIs due to active polling

• Stress on backend database due to large amount of
inserts

19

Metering

• Parallel API deployment for metering
• No impact on user experience

• No risk for the rest of the infrastructure

• Tried different backends
• Not satisfying experience with MongoDB

• Currently using HBase

• Still some problems due to Ceilometer data structure

20

Conclusions
• OpenStack scales and meets our needs for

LHC Run 2

• Working with upstream for new features and
bug fixes

• Cells deployment allows us to scale out easily
adding new groups of nodes

• Further work on ceilometer and nova cells to
work smoothly at our scale

21

22

Questions?

Docs: http://cern.ch/go/9drV

Blog: http://cern.ch/go/9ktl

Other Slides

Workflows

• Increased number of hypervisors, projects
and users

• Automatic tasks on Rundeck

• New projects creation

• Quota updates

• Notifications in case of interventions

• Preconfigured tasks to be run by the sysadmins

Project management

• Delegation to project owners

• Manage tenant users

• Allow operator access to tenants

• Hierarchical multitenancy (future)

• Allocate resources to child tenant

Puppet configuration

• Puppet managed

• Separated hostgroups per service

• Same services in all cells share puppet code

• Specific configuration defined in hiera

