
CERNopenlab

Research topics:

Silicon photonics systems
Next generation data
High speed configurable logic
Computing solutions for high performance data filtering

ICE-DIP 2013-2017: The Intel-CERN European Doctorate Industrial Program

A public-private partnership to research solutions for next generation data acquisition networks, offering research training to five Early Stage Researchers in ICT

13/04/2015 2 Background image: Shutterstock

The Grand Challenge for proposed upgrade of LHCb experiment

- 500 Data sources each generating data at 100 Gbps
- > Requires FPGAs for
 - **DAQ modules**
 - Adaptive, high performance
 - Low Level Trigger decisions
 - Algorithm acceleration
 - FPGAs are great
 - High Performance
 - Flexibility Build anything
 - But...

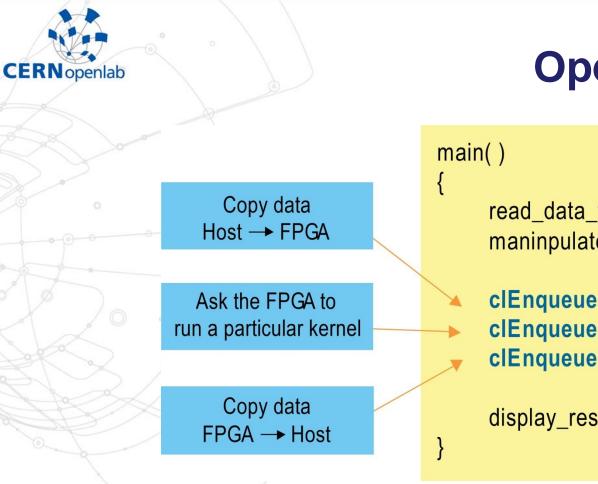
FPGA pains

Programmability, Programmability, Programmability

- Using Hardware Description Languages (HDLs)
- At Register transfer level (RTL) abstraction
- Create Custom Memory Hierarchies
- Manage Communication with PC
- Create PC side SW that plays nice with all this

CERN openlab

OpenCL for FPGA


An unified programming model for accelerating algorithms on heterogeneous systems

- C based programming language
- System level design (Host CPU+FPGA)
- Memory Hierarchy auto generated
- Host CPU-FPGA communication abstracted away
- Potential to integrate existing VHDL/Verilog IP

CERN openlab

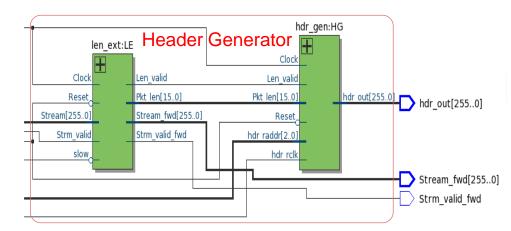
OpenCL for FPGA

read_data_from_file(...); maninpulate_data(...);

clEnqueue WriteBuffer (...); clEnqueue Task(..., my_kernel, ...); clEnqueueReadBuffer (...);

display_result_to_user(...);

End to end DAQ + Acceleration system with 'OpenCL for FPGA' ?

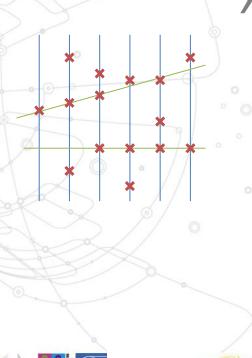

OpenCL spec targets

- Algorithm Acceleration
- Not FPGA design
- But, How about 'OpenCL for FPGA'
 - More than Acceleration?
 - A DAQ system with OpenCL?
 - Only one way to find out
 - Go ahead and implement one

An existing FPGA DAQ system

	Requirement	OpenCL Std spec	Altera OpenCL extension
< ø /	IO, moving data between kernels	X Pipes in v2.0	Channels (IO -> Kernel, Kernel -> Kernel, Kernel ->IO)
-	Bit level manipulation, non std data width	X	Bitfields & Other mechanism
	Control signals	Х	Х
\geq	Maynooth	Srikanth Sridharan – ICE-DIP F	Project 13/04/2015

CERN openlab



Srikanth Sridharan – ICE-DIP Project

13/04/2015 8 Background image: Shutterstock

OpenCL Algorithm Acceleration

> Hough Transform

- Used for particle track reconstruction in LHCb for the future VertexDetector
- Find tracks from the Hit data of the detector
- Exisiting OpenCL GPU code ported to FPGA

Erratum: on this slide a comparison measurement was shown which is erroneous and has been retracted. We will show a corrected measurement in the paper.

First Name and Family Name – ICE-DIP Project

Conclusions

FPGAs have always been capable devices

- Performance, Versatility, Flexibility
- But so have been limited by the usability
 - Separate and HW oriented programming model

OpenCL is a game changer

- Unlocking the potential of FPGAs much easier
- Sure, there are some road blocks
- But future of OpenCL for FPGA is definitely bright

CERN openlab

Thank You!

