
Multicore

Alessandra Forti, Antonio Perez-Calero Yzquierdo

Thomas Hartmann, Manfred Alef, Andrew Lahiff,

Jeff Templon, Stefano Dal Pra
On behalf of the WLCG Multicore Task Force

CHEP, Okinawa

14 April 2015

Layout

● WLCG Task Force
● Scheduling Problem
● CMS&ATLAS models
● Initial observations
● Keeping the slots alive
● Range of options
● Dynamic partitioning
● Dynamic scheduling
● Site status
● Conclusions

WLCG Task Force

● Running multicore a long standing problem in WLCG
● 2 experiments (different philosophies)
● 170 sites different sizes

● 5 batch systems + versioning
● 3 CE flavours
● Other supported VOs

● The objective of the WLCG Task Force is to
● Find a set of easy to implement recommendations to

schedule multicore without waisting resources
● Batch system capability, experiments approach

● Get the sites to run multicore

4

Scheduling problem

● Key problem: in order for a
multicore job to start in a
non-dedicated environment
the machine needs to be
sufficiently drained.

● Creating a multicore slot:
● Prevent single core jobs

from taking freed
resources

● draining = idle CPUs!
● Higher priority single core

arrives and occupies slots
● Wasted draining!

● Key Problems:
● Create mcore slots
● Conserve mcore slots
● Reduce draining vs ability

to run mcore effectively

5

Experiments submission
● CMS move the scheduling within the pilot

● Predictability
● Shared sites still have single core to handle

● ATLAS: mcore and score in parallel with 1 payload per pilot
and let the scheduler do the job.

● Entropy
● Predictability still helps

● Backfilling not an
option yet

6

 Early observations
● Multicore require continuous

draining of slots
● Reduce the number of draining slots at

the time

● Longer waiting times for multicore
jobs

● Sometimes not running for days

● Short jobs (<6h)
● disruptive because they don't exploit the

slots freed.

● Long jobs (>24h)
● Disruptive at shared sites

● Bursty submission most disruptive.
Waste of CPU affected by
submission patterns.

● Disruptive whatever the solution

RAL

7

Keep the mcore slots alive
● Mixture of entropy and predictability

● Experiments:
● Continuous and stable supply of multicore jobs
● Agreed common slot size at each site (default 8)
● Avoid bursty submission patterns, which force the

system to continue and re-adjust the level of draining
● Avoid too short jobs or too long at non-dedicated sites

● Sites
● Allocate multicore jobs to multicore slots

● Instead of single core jobs disrupting the drain process.

● Rank/prioritise multicore over single core
● Limit the number of slots that can be drained at the time

8

Range of options

● Treated in the TF
1. Dynamic partitioning (Torque/LSF)

2. Dynamic scheduling preferential mcore treatment and adaptable
N of drained slots (HTcondor)

3. Dynamic scheduling capacity to limit N of drained slots (SGE)

● Some other sites
1. Static partitioning

● Some dedicated sites with inflexible BS still use this.

2. Dynamic scheduling preferential mcore treatment
● No way to limit the number of draining slots

3. Dynamic scheduling with no adjustments
● All the problems described and no benefits at all!!

9

Dynamic Partitioning
(Torque/LSF)

● Separate pools : avoid other higher priority jobs taking 1 of the
8 slots and destroy the ‘mc slot’

● Floating pool boundary w/ policies for filling and draining the
tank:

● Avoid too many empty slots during filling
● Avoid empty slots if supply of mc jobs consistently dries up

● Protect against short stops

Nikhef

CNAF

PIC

10

Dynamic scheduling
(HTcondor)

● GROUP_SORT_EXPR to
evaluate mcore before score

● Enabled defrag daemon
● Pick WN in order of how many

8-slots can be freed
● WNs can run both score and

mcore at the same time

● Cron to adjust number of
drained slots to workload

● Adjust condor config
DEFRAG_MAX_CONCURRE
NT_DRAINING

2.4%

0.4%

running

queued

RAL

11

Dynamic Scheduling
(SGE)

● Goal: minimize waste of
resources by limiting draining

● Create a PE (Parallel Environment)
● Max number of jobs that can be

considered for draining
● max_reservation_set

● ~10=0.5-1% degradation
● ~20=1-1.5% degradation

● -R y option to enable reservations
● Relies on experiments to

rank/prioritize their workload
● No extra queue
● No partitions
● WNs can run score and mcore

FZK

12

Passing Parameters

● Backfilling is the traditional BS way to minimize
waste
● Requires jobs to pass the walltime at submission
● Work ongoing on passing parameters to the BS in the

TF
● Concerning only ATLAS for now
● Not only walltime but also memory

● cgroups required to handle memory properly
● Not all BS integrated with cgroups

● Torque, SoGE, UGE <8.3.1, LSF<9.1.1

● https://twiki.cern.ch/twiki/bin/view/LCG/BSPassingParameters

13

Sites status

● 85% of ATLAS sites have MCORE enabled
● Still going through optimization
● Reached 40% of resources, 50% slots in March.

● CMS priority for 2015 is multicore prompt
data reconstruction which requires T0 plus
50% of T1 CPU resources.
● All CMS T1s support multicore and target of 50%

of T1 CPUSs has been achieved.
● T2s still on voluntary basis

14

Conclusions
● Quite few people put a lot of work and some

creativity in solving this long standing problem
both on the sites part and the experiments.

● There is still ongoing work
● Looking at related high memory jobs scheduling
● Passing parameters to the batch system

● Infrastructure to make it work is there
● Infact it is currently already working

● Needs fine tuning

15

Backup slides

16

Backfilling
● Jobs of lower priority are allowed to utilize the

reserved resources only if their prospective job end
(i.e. the declared wallclock usage) is before the start
of the reservation

● Successful backfilling relies on two concepts
● Entropy: there should be a distribution of jobs resources requests in

order to increase the likelihood of finding the right "piece" to fill
each temporary hole in draining WNs

● Predictability: job running times estimates, so that the scheduler
can make a decision on whether it should run this job in that hole or
not.

17

Backfilling

18

Reasons why there is no
walltime (yet)

● Inherent to the jobs themselves, as the instantaneous
luminosity and pile-up determine the complexity of events and
thus the job running time.

● This is different for analysis, MC production and data
reconstruction/reprocessing.

● There are mitigating tools in both experiments

● Variance in CPU power for WNs distributed across the grid
and also within sites.

● This may not be so much of a problem if the actual difference between
the fastest and slowest machines at a given site is not larger than 15-
20%.

● The most used CE type it require a standardization of the
scripts to pass parameters to the batch system.

● The TF has taken this on board

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

