PIC ;
port d'informacié
cientifica

-y .\/
oo Nip@ef A

\“(IT * Science & Technology
ey il —~ Facilities Council

Multicore

Alessandra Forti, Antonio Perez-Calero Yzquierdo
Thomas Hartmann, Manfred Alef, Andrew Lahiff,

Jeff Templon, Stefano Dal Pra

On behalf of the WLCG Multicore Task Force
CHEP, Okinawa

14 April 2015

Layout

WLCG Task Force
Scheduling Problem
CMS&ATLAS models
Initial observations
Keeping the slots alive
Range of options
Dynamic partitioning
Dynamic scheduling
Site status

Conclusions

WLCG Task Force

* Running multicore a long standing problem in WLCG
* 2 experiments (different philosophies)

* 170 sites different sizes

* 5 batch systems + versioning
* 3 CE flavours
* Other supported VOs

* The objective of the WLCG Task Force 1s to

* Find a set of easy to implement recommendations to
schedule multicore without waisting resources

* Batch system capability, experiments approach

* et the sites to run multicore

Scheduling problem

* Key problem: in order fora ¢ Key Problems:
multicore job to start in a e Create mcore slots
non-dedicated environment
the machine needs to be
sufficiently drained.

* Conserve mcore slots

* Reduce draining vs ability

. _ to run mcore effectively
* Creating a multicore slot:

CPU HEPSpec time

* Prevent single core jobs ”ﬁ | 1 |
from taking freed I e
resources = 5 |
* draining = idle CPUs!
* Higher priority single core H """"""""""" |
arrives and occupies slots - }

* Wasted draining!

MANCHESTER

1824

Experiments submission

* CMS move the scheduling within the pilot
* Predictability
* Shared sites still have single core to handle

* ATLAS: mcore and score in parallel with 1 payload per pilot
and let the scheduler do the job.

* Entropy Bl I |
+ Predictability still helps &
* Backfilling not an | ==l = ”
OptiOIl yet Ug.........TT.E.".“.'.‘?’_’_“_”_‘?‘_?E‘_"_"_F_?'T________{_l.j =
- ff Atlas
-] =) | | |
= | E Il
= D
— (=])
Inside a scheduler l_;% Il[L — ”

CMS

Early observations

Multicore require continuous
draining of slots T o RAL

Cancelled all drainin Need to drain slots continuously
S to maintain number of running

* Reduce the number of draining slots at workernodes e il e
the time - o
Added monitoring of wasted CPUs due to draining
Longer waiting times for multicore -~ Pastmonth ., Actempting t
Wasted CPUs / reauce
: 400 wasted
J Ob S g 0 resources
E jzz (next slide)
* Sometimes not running for days o ——
M Drainin g
. - We an clearly see the wastage - it’s not hidden within a multi-core
Short JObS (<6h) pilot running a mixture of single & multi-core jobs

« disruptive because they don't exploit the KIT: SingleCore Statistics 2014. Jan N("

slots freed. : v
Long jobs (>24h) :
* Disruptive at shared sites TI -
Bursty submission most disruptive. KIT: Core Statistics 2014. Jan mmm
Waste of CPU affected by , — _ —K ——

submission patterns.

* Disruptive whatever the solution

MANCHESTER

1824

Keep the mcore slots alive

* Mixture of entropy and predictability

* Experiments:
* Continuous and stable supply of multicore jobs
* Agreed common slot size at each site (default 8)

* Avoid bursty submission patterns, which force the
system to continue and re-adjust the level of draining

* Avoid too short jobs or too long at non-dedicated sites
e Sites
* Allocate multicore jobs to multicore slots
* Instead of single core jobs disrupting the drain process.
* Rank/prioritise multicore over single core

* Limit the number of slots that can be drained at the time 7

Range of options

* Treated in the TF
1. Dynamic partitioning (Torque/LSF)

2. Dynamic scheduling preferential mcore treatment and adaptable
N of drained slots (HTcondor)

3. Dynamic scheduling capacity to limit N of drained slots (SGE)

* Some other sites
1. Static partitioning
* Some dedicated sites with inflexible BS still use this.

2. Dynamic scheduling preferential mcore treatment

* No way to limit the number of draining slots

3. Dynamic scheduling with no adjustments
* All the problems described and no benefits at all!!

MANCHESTER : o, o .
Dynamic Partitioning
(Torque/LSF)

* Separate pools : avoid other higher priority jobs taking 1 of the
8 slots and destroy the ‘mc slot’
* Floating pool boundary w/ policies for filling and draining the
tank:
* Avoid too many empty slots during filling

* Avoid empty slots if supply of mc jobs consistently dries up

* Protect against short stops

e oy R = ‘ multicore jobs running at PIC by users
CNAF ~ B cms
i a\‘lg:jmc; = ;199;5.?7: juse=_;-c! .= 2?.0&15.3(?; E;.ij’ty j= 6I7:?6 : EE . ATLAS T

B AtLAs T2

0.4 L S L S LI SRR SN SREE RIS AR S S .
O C o o = I
0.2 e T T S SRREE B ncoressieca i HI it
—— fill factor| ! E HE H :
ool —b/0———— . . i i i i i i iqq
o 1 2 3 8 9 10 11 12 13 14 15 16 17 18 19 20 PI

Days, 2015-03-19:07:24 to 2015-04-08:07:18

MANCHESTER . .
Dynamic scheduling

(HTcondor)

RAL Tier-1 HTCondor Pool (multi-core jobs) Idle and Running

* GROUP SORT EXPR to
evaluate mcore before score

* Enabled defrag daemon

* Pick WN in order of how many
8-slots can be freed

nning jobs:
i O ali pi Oa ot bio cms cms pilot
M enmr Wilc B 1lhcb M lhcb pi 'L t - nagios M ops B pheno M prodatls
B prodcms .p odlhcb M snoplus M snopluspm M t2k
Oueugd jobs)
* WNs can run both score and HHE Cten e Bosy Dre ot [g Plen e pies Doa
HE prodcms B prodlhcb M snoplus M snopluspm B t2k
.
mcore at the same time vasted s
N
240

* Cron to adjust number of | EERa——

drained slots to workload o

* Adjust condor config o ==
80 . 0

DEFRAG MAX CONCURRE :
NT DRAINING -

MANCHESTER

1824 Dynamic Sche dllhng
(SGE)

Goal: minimize waste of
resources by limiting draining

* Create a PE (Parallel Environment)

* Max number of jobs that can be
considered for draining

* max_reservation_set

* ~10=0.5-1% degradation

=]
wo
[u]

* ~20=1-1.5% degradation
* -R y option to enable reservations

* Relies on experiments to
rank/prioritize their workload

slot count

* No extra queue
* No partitions

* WNs can run score and mcore

FZK

11

Passing Parameters

* Backfilling is the traditional BS way to minimize
waste

* Requires jobs to pass the walltime at submission

* Work ongoing on passing parameters to the BS in the
TF

* Concerning only ATLAS for now
* Not only walltime but also memory

* cgroups required to handle memory properly

* Not all BS integrated with cgroups
* Torque, SoGE, UGE <8.3.1, LSF<9.1.1

* https://twiki.cern.ch/twiki/bin/view/LCG/BSPassingParameters

12

Sites status

* 85% of ATLAS sites have MCORE enabled
* Still going through optimization
* Reached 40% of resources, 50% slots in March.

* CMS priority for 2015 1s multicore prompt
data reconstruction which requires TO plus
50% of T1 CPU resources.

* All CMS Tl1s support multicore and target of 50%
of T1 CPUSs has been achieved.

* T2s still on voluntary basis

13

Conclusions

* Quite few people put a lot of work and some
creativity in solving this long standing problem
both on the sites part and the experiments.

* There 1s still ongoing work

* Looking at related high memory jobs scheduling

* Passing parameters to the batch system

* Infrastructure to make it work 1s there

* Infact 1t 1s currently already working

* Needs fine tuning

14

Backup slides

15

Backfilling

Jobs of lower priority are allowed to utilize the
reserved resources only if their prospective job end
(1.e. the declared wallclock usage) 1s before the start
of the reservation

* Successful backfilling relies on two concepts

* Entropy: there should be a distribution of jobs resources requests in
order to increase the likelithood of finding the right "piece" to fill
each temporary hole in draining WNs

* Predictability: job running times estimates, so that the scheduler
can make a decision on whether i1t should run this job in that hole or

not.
Efficient Backfilling tunable tunable not out-of-the-box, but similar ~ yes

behaviour can probably be
configured

16

Backfilling

HEPSpec time

job v |

JobSlot VO: 1] § i
Rt i
Fi ™\ .."
JJJJJ o VO:1 job ¢

VO:2 job

JJJJJJJ

JOBS

BJ\CKFILLED

17

Reasons why there 1s no
walltime (yet)

* Inherent to the jobs themselves, as the instantaneous
luminosity and pile-up determine the complexity of events and
thus the job running time.

* This is different for analysis, MC production and data
reconstruction/reprocessing.

* There are mitigating tools in both experiments

* Variance in CPU power for WNs distributed across the grid
and also within sites.

* This may not be so much of a problem if the actual difference between
the fastest and slowest machines at a given site 1s not larger than 15-

20%.

* The most used CE type it require a standardization of the
scripts to pass parameters to the batch system.

* The TF has taken this on board

18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

