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WLCG Task Force

* Running multicore a long standing problem in WLCG
* 2 experiments (different philosophies)

* 170 sites different sizes

* 5 batch systems + versioning
* 3 CE flavours
* Other supported VOs

* The objective of the WLCG Task Force 1s to

* Find a set of easy to implement recommendations to
schedule multicore without waisting resources

* Batch system capability, experiments approach

* et the sites to run multicore



Scheduling problem

* Key problem: in order fora ¢ Key Problems:
multicore job to start in a e Create mcore slots
non-dedicated environment
the machine needs to be
sufficiently drained.

* Conserve mcore slots

* Reduce draining vs ability

. _ to run mcore effectively
* Creating a multicore slot:

CPU HEPSpec time

* Prevent single core jobs ”ﬁ | 1 |
from taking freed I e
resources = 5 |
* draining = idle CPUs!
* Higher priority single core H """"""""""" |
arrives and occupies slots - }

* Wasted draining!
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Experiments submission

* CMS move the scheduling within the pilot
* Predictability
* Shared sites still have single core to handle

* ATLAS: mcore and score in parallel with 1 payload per pilot
and let the scheduler do the job.

* Entropy Bl I |
+ Predictability still helps &
* Backfilling not an | ==l = ”
OptiOIl yet Ug.........TT.E.".“.'.‘?’_’_“_”_‘?‘_?E‘_"_"_F_?'T________{_l.j =
- ff Atlas
-] =) | | |
= | E Il
= D
— (=] )
Inside a scheduler l_;% Il[ L — ”

CMS



Early observations

Multicore require continuous
draining of slots T o RAL

Cancelled all drainin Need to drain slots continuously
S to maintain number of running

* Reduce the number of draining slots at  workernodes e il e
the time - o
Added monitoring of wasted CPUs due to draining
Longer waiting times for multicore -~ Pastmonth ., Actempting t
Wasted CPUs / reauce
: 400 wasted
J Ob S g 0 resources
E jzz (next slide)
* Sometimes not running for days o ——
M Drainin g
. - We an clearly see the wastage - it’s not hidden within a multi-core
Short JObS (<6h) pilot running a mixture of single & multi-core jobs

« disruptive because they don't exploit the KIT: SingleCore Statistics 2014. Jan N("

slots freed. : v
Long jobs (>24h) :
* Disruptive at shared sites TI -
Bursty submission most disruptive.  KIT: Core Statistics 2014. Jan mmm
Waste of CPU affected by , — _ —K ——

submission patterns.

* Disruptive whatever the solution
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Keep the mcore slots alive

* Mixture of entropy and predictability

* Experiments:
* Continuous and stable supply of multicore jobs
* Agreed common slot size at each site (default 8)

* Avoid bursty submission patterns, which force the
system to continue and re-adjust the level of draining

* Avoid too short jobs or too long at non-dedicated sites
e Sites
* Allocate multicore jobs to multicore slots
* Instead of single core jobs disrupting the drain process.
* Rank/prioritise multicore over single core

* Limit the number of slots that can be drained at the time 7



Range of options

* Treated in the TF
1. Dynamic partitioning (Torque/LSF)

2. Dynamic scheduling preferential mcore treatment and adaptable
N of drained slots (HTcondor)

3. Dynamic scheduling capacity to limit N of drained slots (SGE)

* Some other sites
1. Static partitioning
* Some dedicated sites with inflexible BS still use this.

2. Dynamic scheduling preferential mcore treatment

* No way to limit the number of draining slots

3. Dynamic scheduling with no adjustments
* All the problems described and no benefits at all!!
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Dynamic Partitioning
(Torque/LSF)

* Separate pools : avoid other higher priority jobs taking 1 of the
8 slots and destroy the ‘mc slot’
* Floating pool boundary w/ policies for filling and draining the
tank:
* Avoid too many empty slots during filling

* Avoid empty slots if supply of mc jobs consistently dries up

* Protect against short stops

e oy R = ‘ multicore jobs running at PIC by users
CNAF ~ B cms
i a\‘lg:jmc; = ;199;5.?7: juse=_;-c! .= 2?.0&15.3(?; E;.ij’ty j= 6I7:?6 : EE . ATLAS T

B AtLAs T2

0.4 L S L S LI SRR SN SREE RIS AR S S .
O C o o = I
0.2 e T T S SRREE B ncoressieca i HI it
——  fill factor| ! E HE H :
ool —b/0———— . . i i i i i i iqq
o 1 2 3 8 9 10 11 12 13 14 15 16 17 18 19 20 PI

Days, 2015-03-19:07:24 to 2015-04-08:07:18
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Dynamic scheduling

(HTcondor)

RAL Tier-1 HTCondor Pool (multi-core jobs) Idle and Running

* GROUP SORT EXPR to
evaluate mcore before score

* Enabled defrag daemon

* Pick WN in order of how many
8-slots can be freed

nning jobs:
i O ali pi Oa ot bio cms cms pilot
M enmr Wilc B 1lhcb M lhcb pi 'L t - nagios M ops B pheno M prodatls
B prodcms .p odlhcb M snoplus M snopluspm M t2k
Oueugd jobs )
* WNs can run both score and HHE Cten e Bosy Dre ot [g Plen e pies Doa
HE prodcms B prodlhcb M snoplus M snopluspm B t2k
.
mcore at the same time vasted s
N
240

* Cron to adjust number of | EERa——

drained slots to workload o

* Adjust condor config o ==
80 . 0

DEFRAG MAX CONCURRE :
NT DRAINING -
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(SGE)

Goal: minimize waste of
resources by limiting draining

* Create a PE (Parallel Environment)

* Max number of jobs that can be
considered for draining

* max_reservation_set

* ~10=0.5-1% degradation

=]
wo
[u]

* ~20=1-1.5% degradation
* -R y option to enable reservations

* Relies on experiments to
rank/prioritize their workload

slot count

* No extra queue
* No partitions

* WNs can run score and mcore

FZK

11



Passing Parameters

* Backfilling is the traditional BS way to minimize
waste

* Requires jobs to pass the walltime at submission

* Work ongoing on passing parameters to the BS in the
TF

* Concerning only ATLAS for now
* Not only walltime but also memory

* cgroups required to handle memory properly

* Not all BS integrated with cgroups
* Torque, SoGE, UGE <8.3.1, LSF<9.1.1

* https://twiki.cern.ch/twiki/bin/view/LCG/BSPassingParameters

12



Sites status

* 85% of ATLAS sites have MCORE enabled
* Still going through optimization
* Reached 40% of resources, 50% slots in March.

* CMS priority for 2015 1s multicore prompt
data reconstruction which requires TO plus
50% of T1 CPU resources.

* All CMS Tl1s support multicore and target of 50%
of T1 CPUSs has been achieved.

* T2s still on voluntary basis

13



Conclusions

* Quite few people put a lot of work and some
creativity in solving this long standing problem
both on the sites part and the experiments.

* There 1s still ongoing work

* Looking at related high memory jobs scheduling

* Passing parameters to the batch system

* Infrastructure to make it work 1s there

* Infact 1t 1s currently already working

* Needs fine tuning

14



Backup slides
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Backfilling

Jobs of lower priority are allowed to utilize the
reserved resources only if their prospective job end
(1.e. the declared wallclock usage) 1s before the start
of the reservation

* Successful backfilling relies on two concepts

* Entropy: there should be a distribution of jobs resources requests in
order to increase the likelithood of finding the right "piece" to fill
each temporary hole in draining WNs

* Predictability: job running times estimates, so that the scheduler
can make a decision on whether i1t should run this job in that hole or

not.
Efficient Backfilling tunable tunable not out-of-the-box, but similar ~ yes

behaviour can probably be
configured

16



Backfilling

HEPSpec time

job v |

JobSlot VO: 1 ] § i
Rt i
Fi ™\ .."
JJJJJ o VO:1 job ¢

VO:2 job

JJJJJJJ

JOBS

BJ\CKFILLED
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Reasons why there 1s no
walltime (yet)

* Inherent to the jobs themselves, as the instantaneous
luminosity and pile-up determine the complexity of events and
thus the job running time.

* This is different for analysis, MC production and data
reconstruction/reprocessing.

* There are mitigating tools in both experiments

* Variance in CPU power for WNs distributed across the grid
and also within sites.

* This may not be so much of a problem if the actual difference between
the fastest and slowest machines at a given site 1s not larger than 15-

20%.

* The most used CE type it require a standardization of the
scripts to pass parameters to the batch system.

* The TF has taken this on board

18
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