

Guillelmo Gomez-Ceballos (Massachusetts Institute of Technology)

CERN EPP Seminar March, 2008

Tevatron

- pp̄ collisions at 1.96 TeV
 - ~3 fb⁻¹ data on tape Initial instantaneous luminosity 3.15x10³²cm⁻²s⁻¹
- Approved running until 2009, possible 2010?

Tevatron Detectors

DØ **Detector**

- New LOO installed in 2006!
- Solenoid: 2T, weekly reversed polarity
- Excellent Calorimetry and electron ID
- Triggered Muon Coverage | η |< 2.2

CDF II Detector

- Tracker: Silicon Vertex Detector - Drift Chambers
- Excellent Momentum and Vertex Resolution
- Particle ID: TOF and dE/dx
- Triggered Muon Coverage $|\eta| < 1.0$

B Physics at the Tevatron

- Mechanisms for b production in $p\overline{p}$ collisions at 1.96 TeV

- At Tevatron, b production cross section is much larger compared to B-factories
 → Tevatron experiments CDF and DØ enjoy rich B Physics program
- Plethora of states accessible only at Tevatron: $B_{s},\,B_{c},\,\Lambda_{b},\,\Xi_{b},\,\Sigma_{b}...$
 - \rightarrow complement the B factories physics program
- Total inelastic cross section at Tevatron is ~1000 larger than b cross section \rightarrow large backgrounds suppressed by <u>triggers</u> that target specific decays

b

Tevatron B Triggers

- Triggers designed to select events with topologies consistent with B decays:

- single lepton (+ displaced track): D0 (CDF) --> semileptonic decays

- di-lepton: D0 & CDF --> B \rightarrow J/ ψ X, B \rightarrow µµ, B \rightarrow µµ + hadron(s)

Neutral B_s System

Flavor eigenstates:

$$|\mathsf{B}_{\mathsf{s}}\rangle = (\bar{\mathsf{b}}\mathsf{s}); |\bar{\mathsf{B}}_{\mathsf{s}}\rangle = (\bar{\mathsf{b}}\bar{\mathsf{s}})$$

<u>Pure B_s and B_s at production</u>:

$$i\frac{\partial}{\partial t} \left(\begin{vmatrix} B_{s}^{0}(t) \\ |\overline{B}_{s}^{0}(t) \rangle \right) = \left(M - i\frac{\Gamma}{2} \right) \left(\begin{vmatrix} B_{s}^{0}(t) \\ |\overline{B}_{s}^{0}(t) \rangle \right)$$

Mass eigeinstates are $(|p|^2+|q|^2=1)$:

$$|B_{H}(t)\rangle = p|B_{s}(t)\rangle + q|\overline{B}_{s}(t)\rangle; \qquad |B_{L}(t)\rangle = p|B_{s}(t)\rangle - q|\overline{B}_{s}(t)\rangle$$

⇒ <u>Different Masses</u>:

 $\Delta m_s = M_H - M_L \approx 2 | M_{12} |$ defines the <u>Mixing Oscillation Frequency</u>

 $\Rightarrow \underline{\text{Different Lifetimes}}: \qquad \underline{\text{CPV}}:$ $\Delta \Gamma_{s} = \Gamma_{L} - \Gamma_{H} \approx 2 | \Gamma_{12} | \cos \Phi_{s}, \qquad \Phi_{s}^{\text{SM}} = \arg(-\frac{M_{12}}{\Gamma_{12}}) \approx 4 \times 10^{-3} \text{rad} \qquad \underbrace{\text{ex}}_{s}$

Small Phase expected in SM

B_c Mixing Oscillation Magnitude

CDF: World First Observation (5σ)

• Integrated Luminosity: 1 fb⁻¹ • $\frac{\Delta m_s}{\Delta m_d} = \frac{m_{Bs}}{m_{Bd}} \xi^2 \frac{|V_{ts}|^2}{|V_{td}|^2}$, $\xi = 1.210^{+0.047}_{-0.035}$ (lattice QCD)

$$\Delta m_s = 17.77 + -0.12 \text{ ps}^{-1}$$

DØ: Evidence (3σ)

- Integrated Luminosity: 2.4 fb⁻¹
- First DØ measurement using a hadronic mode
- $\Delta m_s = 18.56 + 0.87 \text{ ps}^{-1}$
- Consistent with CDF result

CP Violation in B_s System

• <u>B_s mixing oscillation is observed</u>:

- $\checkmark \Delta m_s = M_H M_L \approx 2 | M_{12} | is well measured$
- ✓ Precisely determines | M₁₂ | in good agreement with the Standard Model

CDF:
$$\Delta m_s = 17.77 + -0.12 \text{ ps}^{-1}$$

DØ: $\Delta m_s = 18.56 + -0.87 \text{ ps}^{-1}$

- Phase of the mixing amplitude is instead poorly determined
- Both are needed to constrain New Physics:

$$\bullet \mathsf{M}_{_{12}} = |\mathsf{M}_{_{12}}| \mathsf{e}^{\mathsf{i}\phi} \mathsf{M}$$

 Large value of CP Violation phase Φ_M is a clear sign of New Physics!

$\Box P$ in $B_s \rightarrow J/\Psi \Phi$ Decays

• CP Violation arises from the interference between mixing and decay:

• CP violation phase β_{s} in SM is predicted to be very small:

 $2\beta_s^{\text{SM}} = 2 \text{arg}(\text{-}V_{ts}^{\text{+}}\text{V}_{tb}^{\text{+}}\text{/}V_{cs}^{\text{+}}\text{V}_{cb}^{\text{+}}) \approx 0.04 \pm 0.01 \text{ rad}$

- Same New Physics affects the CPV phases as
- If NP phase Φ_s^{NP} dominates $\Rightarrow 2\beta_s = -\Phi_s$

$$2\beta_{s} = 2\beta_{s}^{SM} - \Phi_{s}^{NP} \qquad \Phi_{s} = \Phi_{s}^{SM} + \Phi_{s}^{NP}$$

Phenomenology of $B_s \rightarrow J/\Psi \Phi$

- Nice experimental signature for B physics at hadron machines
- Decays into an <u>admixture</u> of CP even (~75%) and CP odd (~25%)
- $CP|B_{L,H}\rangle \cong \pm |B_{L,H}\rangle \Rightarrow$ Mass and CP states are very close
- C-even \Rightarrow <u>Different Parity</u> \Rightarrow Separate CP contributions

• $B_s \rightarrow J/\Psi \Phi$ decays leads to three different angular momentum final states:

✓ L=0 (S-wave), L=2 (D-wave) ⇒ P-even ✓ L=1 (P-wave) ⇒ P-odd

- <u>Angular Analysis</u> to separate the different parity contributions
- Transversity Basis $W = (\theta, \Phi, \psi)$
- Sensitivity to $\Delta\Gamma_s$ and CP-Violation phase $2\beta_s$

(also in untagged sample due to CP-even/CP-odd interference)

Signal PDF for $B_s \rightarrow J/\Psi \Phi$

General decay rate formula:

$$\begin{array}{l} \frac{d^{4}P(t,\underline{w})}{dtdw} \propto |A_{0}|^{2} T_{+}f_{1}(w) + |A_{||}|^{2} T_{+}f_{2}(w) \\ + |A_{\perp}|^{2} T_{-}f_{3}(w) + |A_{||}||A_{\perp}|U_{+}f_{4}(w) \\ + |A_{0}||A_{||}|\cos(\delta_{||})T_{+}f_{5}(w) \\ + |A_{0}||A_{\perp}|V_{+}f_{6}(w) \end{array}$$

$$\begin{split} T_{\pm} &= e^{-\Gamma t} \; x \; [\cosh(\Delta \Gamma t/2) \mp \cos(2\beta_s) \sinh(\Delta \Gamma t/2)] \\ &\mp \eta \sin(2\beta_s) \sin(\Delta m_s t)], \; \eta = +1(-1) \, \text{for } P(\overline{P}) \end{split}$$

$$\begin{split} U_{\pm} &= \pm e^{-\Gamma t} \times [\sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m_{s}t) \\ &- \cos(\delta_{\perp} - \delta_{\parallel})\cos(2\beta_{s})\sin(\Delta m_{s}t) \\ &\pm \cos(\delta_{\perp} - \delta_{\parallel})\sin(2\beta_{s})\sinh(\Delta\Gamma t/2)] \end{split}$$

 $V_{\pm} = \pm e^{-\Gamma t} \times [\sin(\delta_{\perp})\cos(\Delta m_{s}t) - \cos(\delta_{\perp})\cos(2\beta_{s})\sin(\Delta m_{s}t) \\ \pm \cos(\delta_{\perp})\sin(2\beta_{s})\sinh(\Delta\Gamma t/2)]$

- B_s decays into mixture of CP eigeinstates: <u>interference</u> terms in general decay rate formula
- In the Transversity basis the vector meson polarization w.r.t the direction of motion is:
- ✓ Longitudinal $\Rightarrow A_0$ [CP even] ✓ Transverse and parallel
 - to each other $\Rightarrow A_{\parallel}$ [CP even]
- ✓ Transverse and perpendicular to each other $\Rightarrow A_{\perp}$ [CP odd]
- Strong phases: $\checkmark \delta_{\parallel} \equiv \arg(A_{\parallel}^*A_0)$
- $\checkmark \delta_{\perp} \equiv \arg(A_{\perp}^*A_0)$
- Terms with Δm_s dependence flip sign for initial B_s flavor
- Untagged analysis are insensitive to $\Delta\Gamma_s$ and β_s signs \Rightarrow <u>4-fold ambiguity</u>

Experimental analysis: * signal selection - untagged results * b-flavor tagging - tagged results

Selection of $B_s^{} \to J/\psi \phi$ Decays

- D0 analysis: cut based approach
 - Variables not biasing lifetime distribution
 - $p_t(\mu, K, J/\psi, \phi, B_s)$, m(J/ ψ, ϕ), vertex fit probability (J/ ψ, ϕ, B_s), pid(μ, K)
- CDF: multivariate techniques
 - All of them give similar performance, always better than cut based ones
 - Using the same variables as D0, but in a more sophisticated way
 - Neural Network frameworks were used

Mass distributions on selected $B_s \rightarrow J/\psi \phi$ Decays

- D0 tagged analysis (2.8 fb⁻¹): ~2000 signal candidates with S/B~1/4
- CDF tagged analysis (1.3 fb⁻¹): ~2000 signal candidates with S/B~1/1

B_s Lifetime and Decay Width

- Sizeable $\Delta\Gamma_s \Rightarrow$ CP-even and CP-odd contributions of the signal can be distinguished
- Results assuming no CP violation $\Rightarrow \beta_s = 0$

• $B^0 \rightarrow J/\Psi K^{*0}$: CDF validates treatment of detector acceptance!

 \Rightarrow Results compatible and competitive with B Factories (see next slide)

Angular Analysis in $B^0 \to J/\psi K^{*0}$ Decays at CDF

Untagged Analysis: Bias

- Biases due to low statistics
- <u>Non-Gaussian</u> estimates in pseudo-experiments
- Strong <u>dependence</u> on true values for biases on some fit parameters

generated with SM inputs for $\Delta\Gamma_{s}$ and β_{s}

⇒ Dependence on one parameter in the likelihood vanishes for some values of other parameters: Likelihood looses degrees of freedom

e.g., if $\Delta\Gamma=0$, δ is undetermined: $\cos(\delta_{\perp})\sin(2\beta_{s})\sinh(\Delta\Gamma_{s}t/2)$

CP in Untagged $B_s \rightarrow J/\Psi \Phi$

- Allowing CP violation phase β_{s} to float in the fitter
- Symmetry in the likelihood 4-fold ambiguity
- **D**Ø quotes a <u>point estimate</u>:

 $\Rightarrow \Phi_{s} = -2\beta_{s} = -0.79 \pm 0.56 \text{ (stat)}_{-0.01}^{+0.14} \text{ (syst) rad}$ $\Rightarrow \Delta\Gamma_{s} = 0.17 \pm 0.09 \text{ (stat)} \pm 0.02 \text{ (syst) ps}^{-1}$

• **CDF** observes irregular likelihood and biases in fit

 \Rightarrow <u>Feldman-Cousins confidence region</u>: SM probability $p_{value} = 22\%$ (1.2 σ)

Flavor tagging

B Flavor Tagging, Opposite-Side

- Opposite -Jet-Charge-Tagging
 - sign of the weighted average charge of opposite B-Jet
- Soft-Lepton-Tagging (electron and muon)
 - identify soft lepton (e, μ) from semileptonic decay of opposite B
 - dilution due to b --> c decays and B oscillations

B Flavor Tagging, Same-Side (I)

- B fragmentation:

- $\mathsf{B}_{_{\text{d/u}}}$ is likely to be accompanied close by a $\pi^{\scriptscriptstyle+\!/\text{-}}$
- \bullet B_s is likely to be accompanied close by a K

} **B**° u s **} B**⁻ d s $\overline{\mathbf{B}}_{s}^{0}$

u d

- Particle ID helps a lot to the tagging power
- No straightforward way to measure the tagger power $\ensuremath{\kappa}$
- Need to rely on MC, a lot of studies were performed! \searrow Until B_s Mixing is(was) observed...

B Flavor Tagging Performance

- Efficiency (ϵ): fraction of tagged candidates
- Dilution (D) = $(1 2 p_w)$, p_w : probability of giving wrong tagging decision
- ϵ D²: maximum value, smaller statistical error

- CDF:
 - Opposite-side tagging: $\varepsilon \sim 96\%$, D ~ 12%, ε D² ~ 1.4%
 - Same-side tagging: $\epsilon \sim 50\%$, D ~ 27%, ϵ D² ~ 3.6%
 - Calibrated only for 1.3 fb⁻¹
- D0:
 - Combined Same-side and Opposite-side tagging: ϵ D² ~ 4.7%
 - Opposite-side tagging alone: ϵ D² ~ 2.5%

Flavor Tagging Effect

- Tagging improves sensitivity to CP violation phase β_{s}
- Exact symmetry present in signal probability distribution
- Two minima in the likelihood
- Check $\beta_s\text{-}\Delta\Gamma_s$ likelihood profile with Toy MC to understand tagging effect
- Likelihood: with tagging, gain sensitivity to both $|\cos(2\beta_s)|$ and $\sin(2\beta_s)$, rather than only $|\cos(2\beta_s)|$ and $|\sin(2\beta_s)|$ (note absolute value)
- $\beta_s \leftrightarrow -\beta_s$ is no longer a likelihood symmetry:
 - ⇒ 4-fold ambiguity reduced to 2-fold ⇒ allowed region for β_s is reduced to half

CP in Tagged $B_s \rightarrow J/\Psi \Phi$

• First tagged analysis of $B_s \rightarrow J/\Psi\Phi$ decay arXiv: 0712.2397

Irregular likelihood does not allow quoting point estimate:

✓ Feldman-Cousins likelihood ratio ordering

✓ Systematics were taken into account

CP in Tagged $B_s \rightarrow J/\Psi \Phi$

<u>1-dim Feldman-Cousins procedure on CP violation phase β_s </u>

- 1. <u>Without External Constraints</u>: $2\beta_s$ in [0.32, 2.82] at the 68% C.L.
- 2. $\Delta \Gamma_{s}$ is theoretically constrained:

• Input $\Delta \Gamma_s = 2 |\Gamma_{12}| \cos \Phi_s \approx 2 |\Gamma_{12}| \cos(2\beta_s)$: (Γ_{12} =0.048±0.018):

 $2\beta_s$ in [0.24, 1.36] U [1.78, 2.90] at 68% C.L.

3. Strong phases from $B_d \rightarrow J/\Psi K^{*0}$ [PRD 71, 032005 (2005)],

<u>**B**</u>_s lifetime from <u>**B**</u>_d [PDG] and $\Delta\Gamma_s \simeq 2|\Gamma_{12}|\cos(2\beta_s)$:

 $2\beta_s$ in [0.40, 1.20] at 68% C.L.

CP' in Tagged $B_s \rightarrow J/\Psi \Phi$

•<u>Tagged analysis</u> of $B_s \rightarrow J/\Psi\Phi$ decay from $D\emptyset$

arXiv: 0802.2255

• Quoting point estimate:

FIT inputs: Δm_s fixed to 17.77 ps⁻¹ \leftarrow CDF $\tau_s = 1.52 \pm 0.06 \text{ (stat)} \pm 0.01 \text{ (syst) ps}$ Gaussian constraint on Strong phases: $\Delta\Gamma_{\rm s} = 0.19 \pm 0.07 \text{ (stat)}_{-0.01}^{+0.02} \text{ (syst) ps}^{-1}$ $\delta_{\perp} - \delta_{\parallel} = -0.46 \pm (\pi/5) \leftarrow B$ Factories $\Phi_s = -2\beta_s = -0.57^{+0.24}_{-0.30}$ (stat) $^{+0.07}_{-0.02}$ (syst) rad $\delta_1 = +2.92 \pm (\pi/5)$ •Small change if the constraint is not included ່ວ. 'sd) ₀0.3∣ DØ , 2.8 fb⁻¹ Standard Model (a) 90% C.L. contours: $\blacksquare B_s^0 \rightarrow J/\psi \phi$ expectations: ₹**0.2** $-1.20 < 2\beta_s < 0.06$ rad $\Delta M_{s} \equiv 17.77 \text{ ps}^{-1}$ (arXiv:hep-ph/0612167) **0.1** $2\beta_{s} = 0.04 \pm 0.01$ rad $0.06 < \Delta \Gamma_{\rm s} < 0.30 \ {\rm ps}^{-1}$ -0 **CDF 68% CL:** SM **Standard Model** -0.1 $\Delta \Gamma = \Delta \Gamma_{\rm SM} \times |\cos(\phi_{\rm s})|$ **Constraining lifetime**, **p**_{value} = **6.6**% -0.2<u>-</u> strong phases and Γ_{12} -1.5 -0.50.5 1.5 φ (radian)

Conclusions

- Tevatron has a very active program in B Physics, with relevance in B_s sector
- Complementary and competitive with B Factories
- First sin($2B_s$) results from D0 & CDF
 - D0 will release the likelihood scans with no strong phases constraints very soon
- Interesting sin($2\beta_s$) fluctuation at Tevatron experiments:
 - exclude large negative values
 - both experiments
- Coming improvements:
 - Add more data, specially CDF
 - Better selection at D0

Constraints on β_s

UTfit combination

Back up

Signal PDF for $B_s \rightarrow J/\Psi \Phi$

 $\epsilon(w)$ is the <u>sculpting</u> of transversity angles due to <u>detector</u> acceptance

Detector Sculpting of Angles

- Monte Carlo passed through detector simulation and to determine angular sculpting
 - Deviation from flat distribution indicates detector effects

• Data projections <u>uncorrected</u> for detector sculpting

Feldman-Cousins Procedure

Likelihood Ratio:
$$R(\Delta\Gamma, \Phi) = \log \frac{L(\Delta\hat{\Gamma}, \hat{\Phi}, \hat{\theta})}{L(\Delta\Gamma, \Phi, \hat{\theta}')}$$

^ = parameters minimized by the likelihood L

 θ' = parameters which minimize L for a specific choice of $\Delta\Gamma,\!\Phi$

• For a specific choice of $\Delta\Gamma, \Phi$ pseudo-exp are generated using θ'

•
$$p_{value} = \int_{Rdata}^{\infty} f(R, \Delta\Gamma, \Phi) dR$$

Plug-In Method

Frequentist approach: probability to observe a result with $R \ge R_{data}$, if $\Delta\Gamma$ and Φ are the values predicted by some model

Feldman-Cousins Procedure

Constraints on Tagged B_s \rightarrow J/ Ψ Φ

- SU(3) flavor symmetry suggests that $B_{\rm s}$ and $B^{\rm 0}$ have similar lifetimes and strong phases
- Likelihood profiles with external constraints from B factories
- Underestimated confidence regions when using $2\Delta ln L = 2.31$ (5.99) to approximate 68% (95%) C.L. regions

 \Rightarrow External constraints on strong phases remove residual 2-fold ambiguity

$B_s \rightarrow D_s \pi$ lifetime

ст(Bs) = 455.0 ± 12.2 (stat.) ± 7.4 (syst.) µm

•~1100 fully reconstructed $B_s \rightarrow D_s \pi$ decays •~2000 partially reconstructed $B_s \rightarrow D_s \pi/\rho$ decays

Charge Asymmetry

• CP Violation in <u>mixing</u>

• if
$$\Delta m_s / \overline{\Gamma}_s >> 1 \Rightarrow A_{SL}^s = \frac{\Delta \Gamma_s}{\Delta m_s} \tan \Phi_s$$

- <u>Combine these results with $B_s \rightarrow J/\Psi\Phi$ measurements to constrain phase β_{s-} </u>
- <u>CDF</u>: 1.6 fb⁻¹ of data collected (di-muon charge asymmetry):

 $A_{SL}^{s} = 0.020 \pm 0.021$ (stat) ± 0.016 (syst) ± 0.009 (inputs)

(http://www-cdf.fnal.gov/physics/new/bottom/070816.blessed-acp-bsemil/)

DØ: 1.0 fb⁻¹ of data collected (di-muon charge asymmetry):

 $A_{SL}^{s} = -0.0064 \pm 0.0101$ (stat + syst)

PRD 74, 092001 (2006)

• \underline{D} : 1.3 fb⁻¹ of data collected (B_s semileptonic decays):

 $A_{SL}^{s} = [2.45 \pm 1.93 \text{ (stat)} \pm 0.35 \text{ (syst)}] \times 10^{-2}$

PRL 98, 151801 (2007)