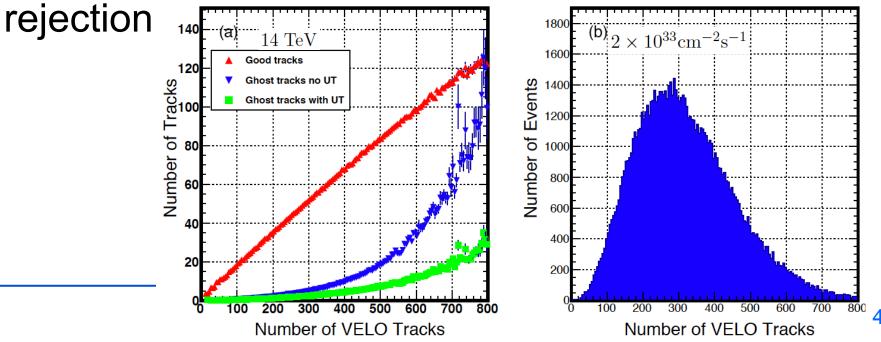
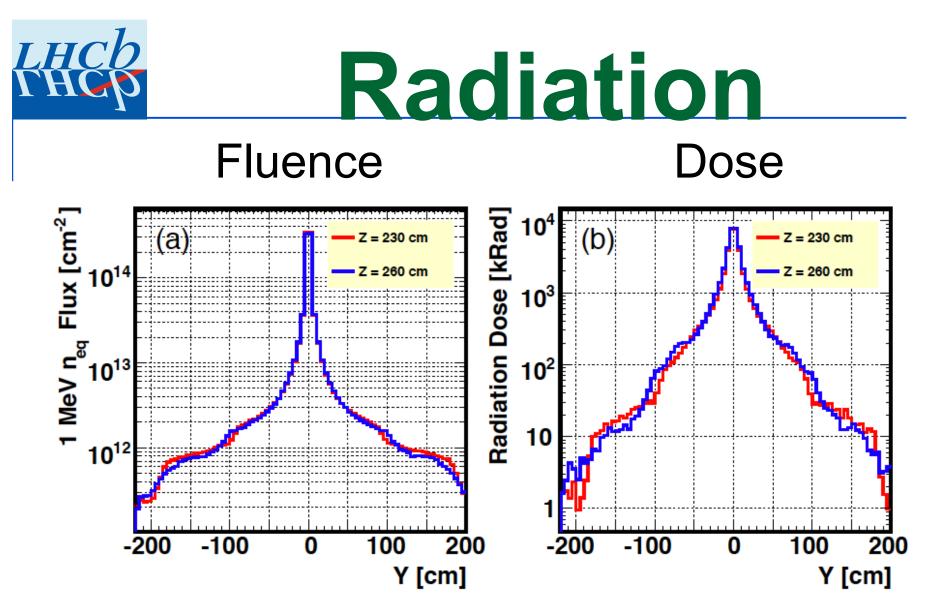


UT TDR Summary

Participants

- Syracuse University: M. Artuso, S. Blusk, T. Skwarnicki, S. Stone, R. Mountain, J. Wang, P. Gandini, C. Hadjvasiliou, M. Kelsey, S. Ely, & T. Britton
- University of Maryland: H. Jawahery, D. Roberts, J. Andrews, J. B. K. Hamilton, J. Wimberely, & T. O'Bannon
- University of Cincinnati: B. Meadows, M. Sokoloff, & A. Davis
- **MIT:** M. Williams, & P. Ilten
- INFN/University of Milano: A. Abba, F. Caponio, M. Citterio, S. Coelli, A. Cusimano, J. Fu, A. Geraci, M. Lazzaroni, M. Monti, N. Neri, & F. Palombo
- University of Zurich: N. Serra, O. Steinkhamp, E. Graverini, F. Lionetto, K. Mueller, & S. Saornil
- AGH-UST Krakow: M. Firlej, T. Fiutowski, M. Idzik, J. Moron, K. Swientek, & T. Szumlak
- **CERN:** J. Lopes, O. Jamet, & B. Schmidt

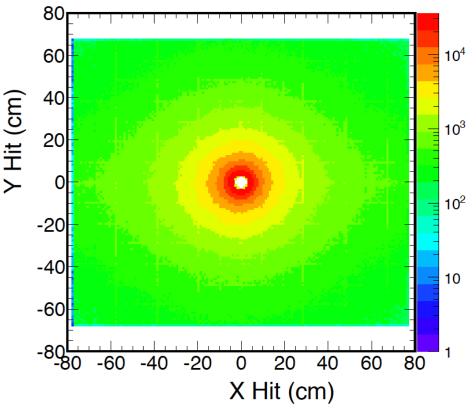

• Finds $K_s \& \Lambda$ about 2x those in VELO


- If used, improves S/B: in B_s→D_s⁺π⁺π⁻π⁻, with D_s→K⁺K⁻π⁺, B/S 12.2%→8.4% requiring that all 6 tracks have at least 3 TT hits
- If tracks have TT hits mass resolutions are improved, e.g. on Y, by 25%
- Ghost are also reduced if TT is used, e.g. measurements of W[±] require TT hits
- For upgrade: 40 MHz read out requires fully replacing TT; also occupancies & rad damage would be excessive

LHCC, March 4, 2014

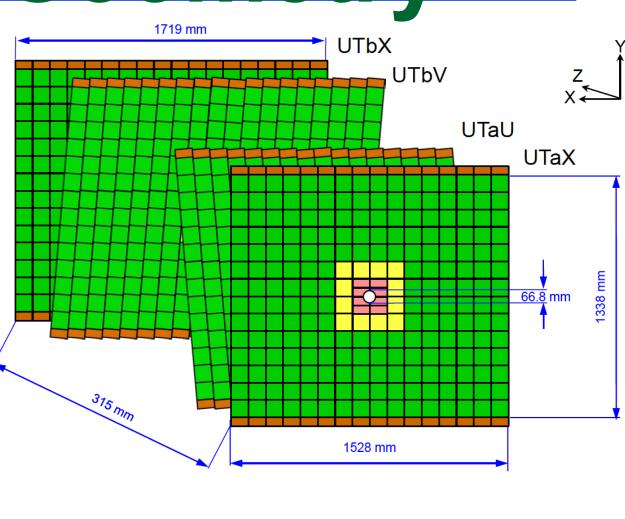
UT Requirements

- Must be efficient, >99.0% everywhere within the detector acceptance. Then having 3/4 hits gives a per track efficiency of >99.9%
- With this efficiency Can use in trig to speed up forward tracking, & allows for efficient ghost track



X=0, shows the highest radiation slice

Occupancy


- Highest dose region corresponds to highest occupancy
- Must handle read out rate
- Many specific
 requirements in
 each TDR section

Geometry

- Z locations same as TT
- Each green box is a 190 µm pitch, 250 µm thick, 10x10 cm² silicon sensor individually read out
- Yellow are 95 μm pitch
- Pink are 85 μm pitch 10x5 cm²

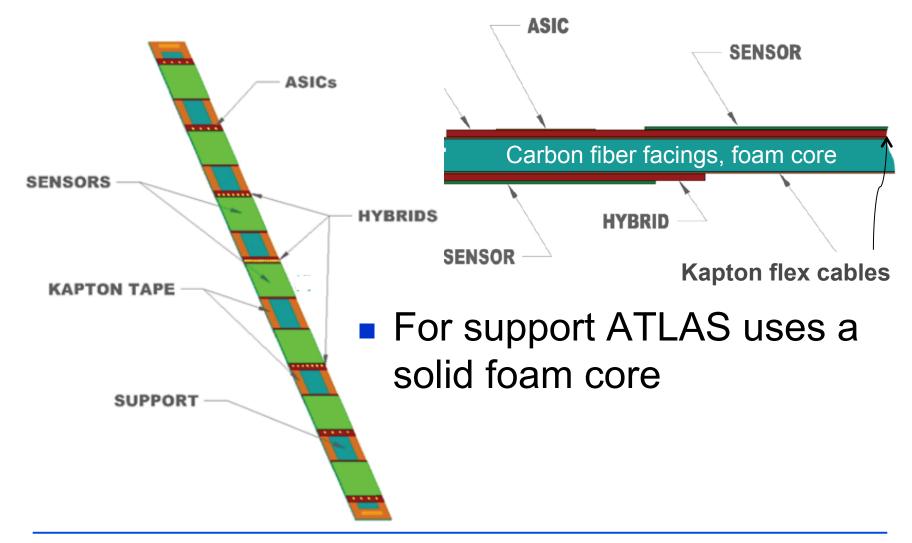
UTaU and UTbV are 5° stereo

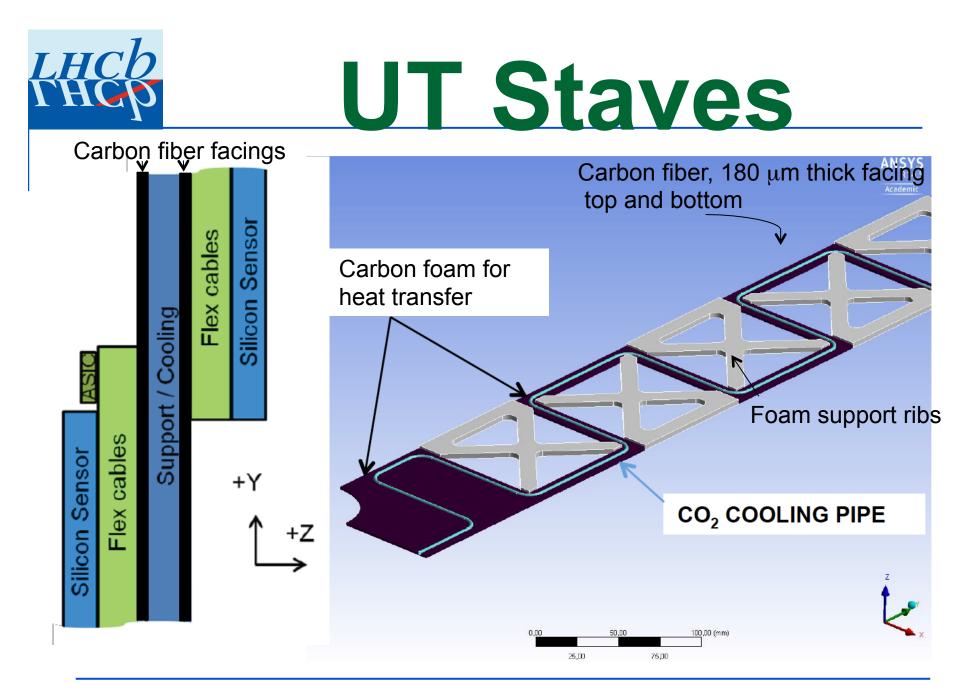
Beam pipe hole

- Physical hole diameter is 2 x 33.4 mm for physical hole in sensors. Includes space for beam pipe wrapping with kapton & pyrogel as designed by Kaan Vatansever
- Arises from beam pipe radius at most downstream plane, 27.4 mm, thermal insulation is 5.0 mm but compresses to 3.5 mm, giving a 2.5 mm radial clearance
- Sensor active area goes down to R=34.2 mm due to 0.8 mm guard ring

 Conclude: extra B inefficiency is small below 35 mm inner sensor radius

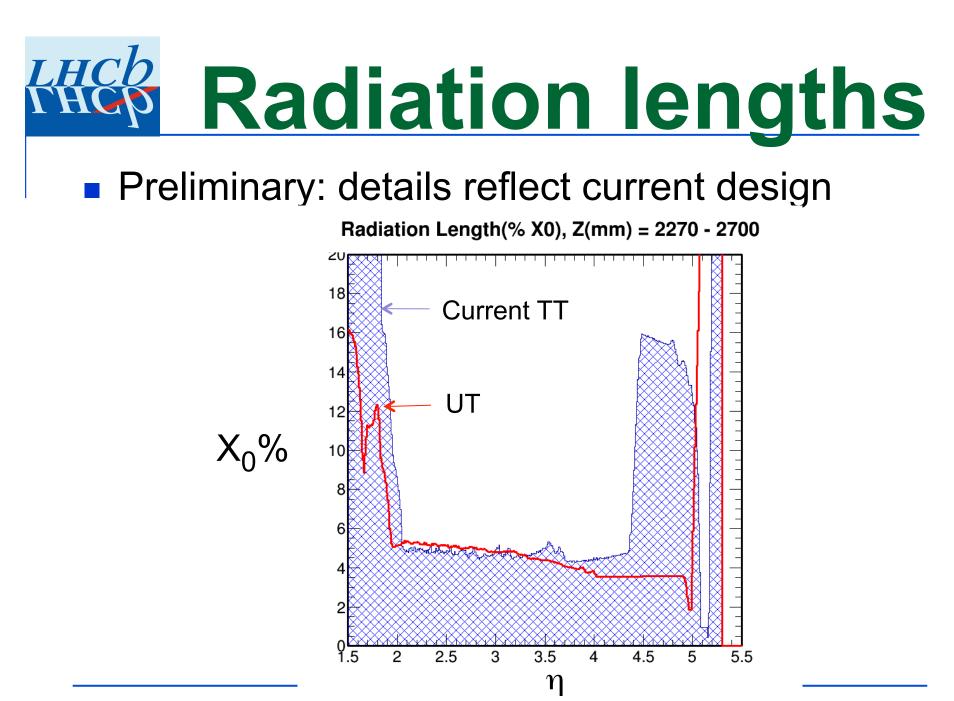
Mechanical requirements


- Structure must support Si (~10 cm x 10 cm) including overlaps of sensors (~2 mm)
- Structure must be stable enough to prevent wire-bonds from breaking due to flexing or other motions
- Structure must not move during data taking, with position stability < 20 μm
- Minimal thickness in radiation lengths, no thicker than TT
- Provide cooling to Si & electronics (Si temp < -5°C)
- Ability to move out of the way when beam pipe is baked
- Provide Cable support
- Outer box for optical, thermal and gas isolation



- Use local readout to reduce noise due to capacitance
- Allows use of thin 250 µm thick Si
- "Borrow" many ideas from ATLAS upgrade silicon. However ATLAS must support the Si horizontally _____, while we require vertical |
- ATLAS concept is based on "staves"

LH



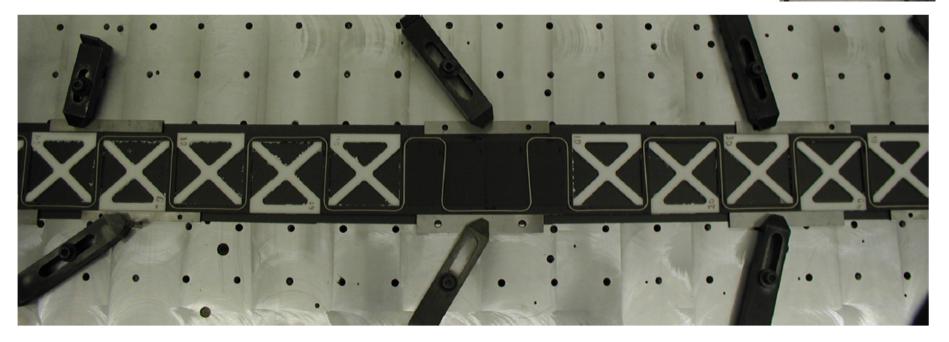
Overlaps

Frame

- Easy to get overlaps vertically (Y), just overlap Si on both sides of staves
- Horizontally (X) need to stagger stave
 - mounting
- Not a design, but shown so
- but Shown So
- you get the idea
- Next layer is mounted
- on the other side of the frame

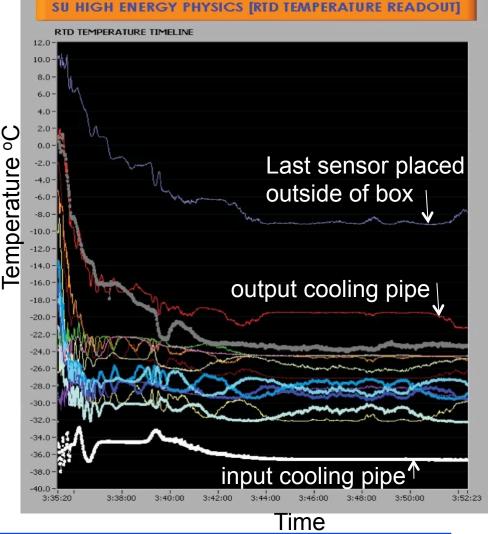
LHCC, March 4, 2014

Cooling: evaporative CO₂


- Need to keep sensors < -5°C that are heated by the front-end chips, the SALT ASICs: currently we assume it to be 0.77 W/chip [6mW/ch]. Final system may achieve less power consumption! Also heat from Si
- Cooling simulation studies (INFN Mi) & measurements with mechanical mock-up and CO₂ cooling system (Syracuse) have been done

Cooling test

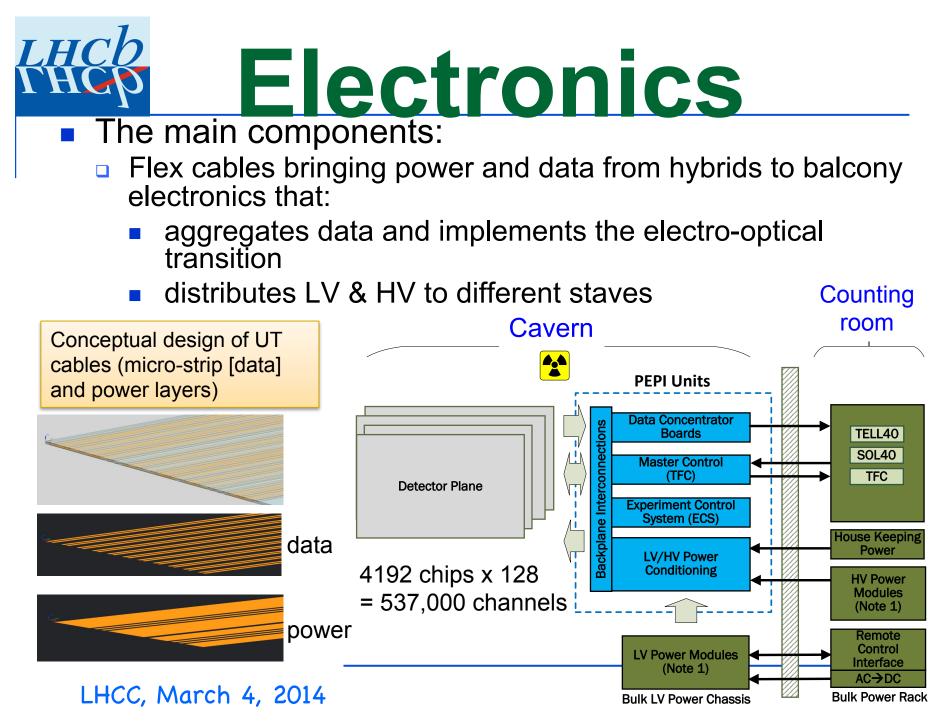
- CO₂ "blow through" system constructed at Syracuse
- First test stave also made



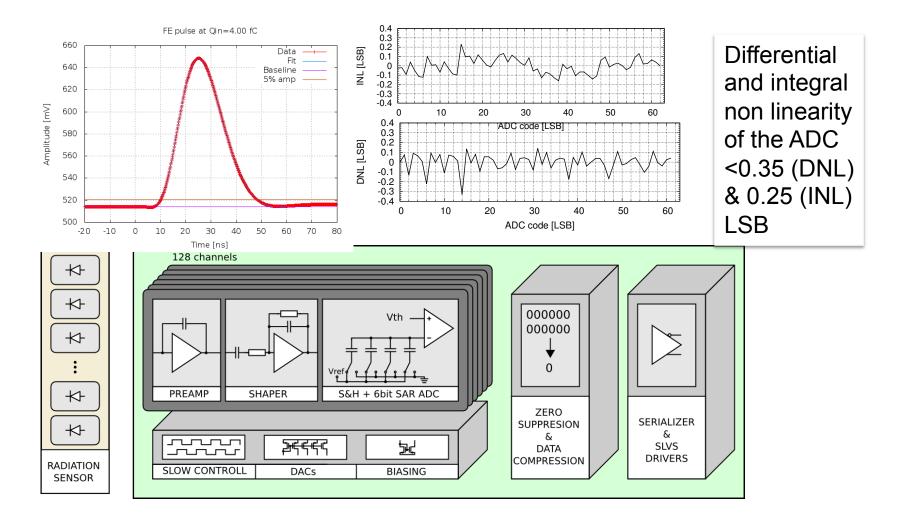
Test results

- Stave was completed with Si sensors (some brass), kapton cables, heaters for ASIC's
- Actual carbon-fiber sheets, & foams
- After 1st run all sensor temps < -5°C
- Stave maintains its mechanical integrity, now after 9 cycles

LHCC, March 4, 2014


Sensors and hybrids

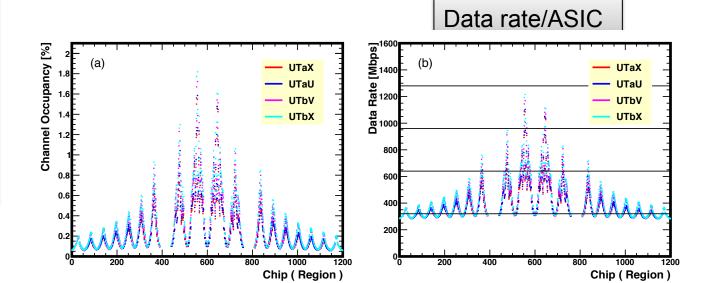
512 strips Type A	1024 stripsType B102	24 strips Type C 24 strips Vpe D	
Property	Sensors B,(C,D)	Sensors A	
Technology	n ⁺ -in-p	p ⁺ -in-n	
Thickness	$250~\mu { m m}$	$250 \ \mu m$	
Physical dimensions	98 mm X 98 (49) mm	$98~\mathrm{mm} \ge 98~\mathrm{mm}$	
Length of read-out strip	98 (49) mm	98 mm	
Number of read-out strips	1024	512	
Read-Out strip pitch	$95~\mu { m m}$	$190 \ \mu m$	
Sensor number (needed)	48 (16,16)	888	


Sensors: Standard technology except for fan-in & circular hole. Hybrids: low mass flex circuits mounted on an FR4 carrier, host SALT chips & some filtering.

LHCC, March 4, 2014

LHC

DAQ Integration

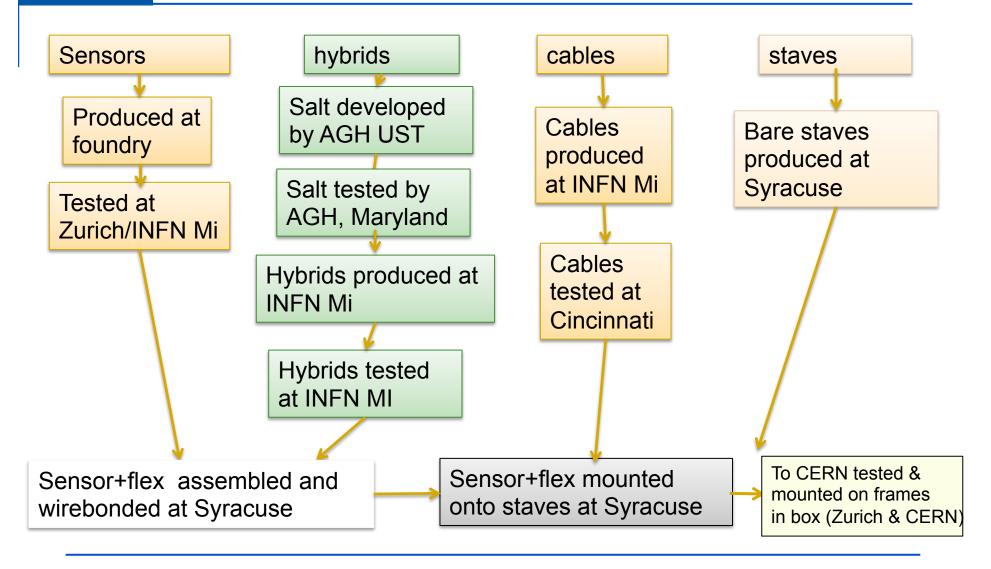

 1 SALT has 1-5 e-links synchronously sending data at 320 Mbits/s on the flex cable to the GBTx ASIC on the DCB board

LHC

1 GBTx processes up to 10 e-links & send signals to AMC40 board

Header Field (6 or 12 bits)		Data	Comment			
BXID	NoData	IsTrunc	Length	Field		
4-bit	1	0	-	-	BXVeto, HeaderOnly, or NumHits $= 0$	
0000	1	1	-	-	Idle packet	
4-bit	0	0	6-bit	Hits	Normal event, $0 < \text{NumHits} \le 63$	
4-bit	0	1	6-bit	-	Truncated event, NumHits>63 or bufferFull	
4-bit	0	1	11 1111	Data	NZS packet, fixed length of data	
12-bit	-	-	-	Pattern	Synch packet, with preset pattern	

Event packet format (LHCb specifications)


LHCC, March 4, 2014

Responsibilities

Work-package	Institution(s)
Sensor and hybrid module	INFN Mi, Syracuse
SALT	AGH-UST
Electronic	INFN Mi, Maryland, Syracuse
Data acquisition and Experiment control	Maryland, Syracuse, Zurich
Mechanics and cooling	Syracuse, INFN Mi, CERN, Cincinnati
Integration and testing	All
Integration with LHCb	INFN Milano, Syracuse, Zurich, CERN

UT construction

LHCC, March 4, 2014

LHC

Project cost

Detector component	Cost(kCHF)
Si Sensors & Hybrids	2700
SALT	1300
Cables	160
PEPI Electronics	620
DAQ HV/LV	780
Staves & Hybridization	510
Infrastructure	130
Cooling	300
Subtotal	6500
US personnel (project)	430
Total	6930

Trigger tracking Idea here is to use the magnetic field

Between the VELO and UT to get a

rough measurement, $\Delta p/p \sim 15\%$, that

Allows a drastic reduction in the # of candidates passed to Forward (match with T track), as well as a tighter search window

Upstream track

VELO track

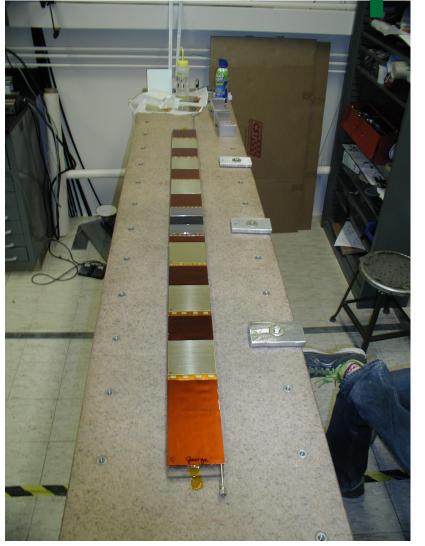
Long track

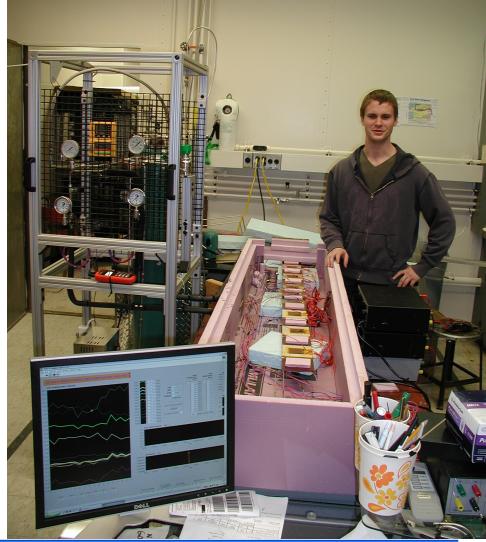
Downstream track

T1 T2 T3

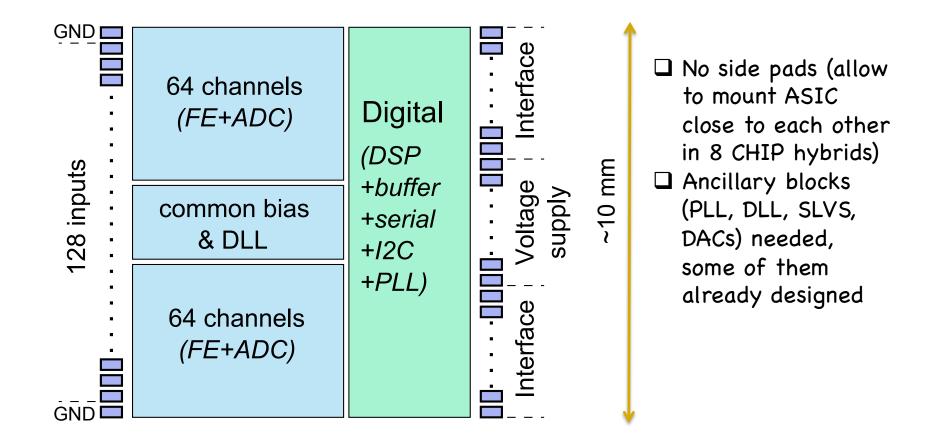
Table 4.19: Timing numbers for the VELO-Forward and the VELO-Upstream-Forward reconstruction sequence. These numbers were obtained using samples of simulated minimum bias events.

	VELO-Forward		VELO-Upstream-Forward		
time $[ms/events]$	$\nu = 3.8$	$\nu = 7.6$	$\nu = 3.8$	$\nu = 7.6$	
VELO	0.7	1.8	0.7	1.8	
Upstream	-	-	0.9	2.2	
Forward	4.0	22.5	1.2	4.1	
Total	4.7	24.3	2.8	(8.1)	


Conclusions


- UT R&D is well underway
- We believe that we have a high performance, lightweight, & constructible design
- Funding is being actively sought, some has been granted, and we are optimistic
- The UT should be a very useful device in LHCb
 - Large reduction in ghost rates
 - Essential for Vee finding
 - Improves momentum resolution
 - Speeds up trigger timing by ~factor of 3

LHCC, March 4, 2014



LHCC, March 4, 2014

SALT chip blocks

Si planes

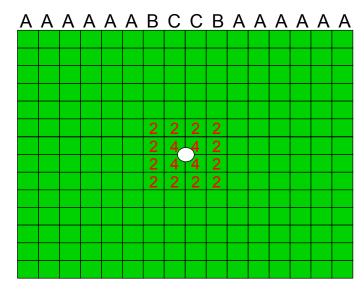
Four planes, z locations & related inner hole dimensions

Table 1.Nominal Z-location of each UT plane and beampipe radius at that location.The UT inner radius for all planes is 33.4 mm.

UT Plane	Z Plane (center) [mm]	Outer Radius (beampipe) [mm]	Outer Radius (exclusion) [mm]	Inner Radius (UT active) [mm]
UTAX	2327.5	26.0	32.0	32.8
UTAU	2372.5	26.0	32.0	32.8
UTBV	2597.5	27.0	33.0	33.8
UTBX	2642.5	27.4	33.4	34.2
MAX (ref.)	2750.0	28.5	34.5	35.3

Note: "excluded" refers to the outer radius of the beampipe plus an insulating jacket (5 mm) and mechanical clearance (1 mm). For the minimum inner radius for the active area of a sensor, a guard ring (0.8 mm) is added. "Max" refers to the largest local radius in the current beampipe.

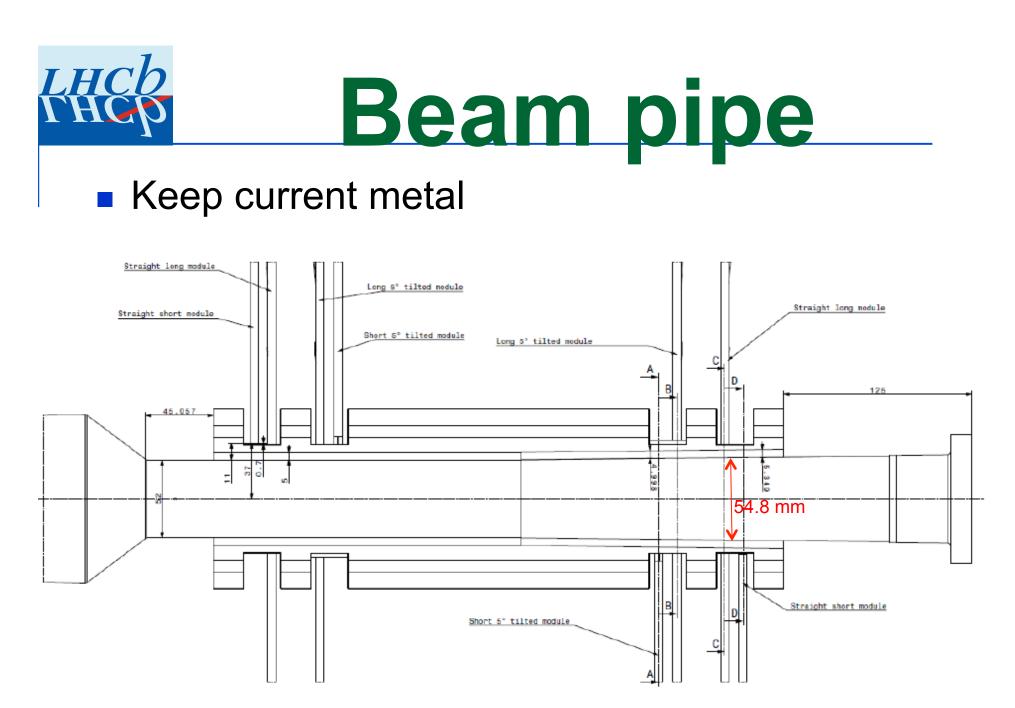
Same stereo angles ±5° as current TT


Effects of hole size

- Three different channels are selected, which represent different multiplicities in the final states.
 - B_s → J/ψ π⁺π⁻, J/ψ → μ⁺μ⁻ 4 tracks ■ B⁺ → J/ψ K⁺π⁺π⁻, J/ψ → μ⁺μ⁻ 5 tracks ■ B_s → D_s⁻π⁺π⁺π⁻, D_s⁻ → φπ⁻ 6 tracks
- The signals are simulated at $E_{CM} = 14 \text{ TeV}$, L=2x10³³ cm⁻²s⁻¹
- The detector configuration include three upgrade subdetectors: VP-compact with micro-channel, UT & FT.
- For K/π: P_t > 0.3 GeV, P > 3 GeV, for μ: P_t > 0.55 GeV, P > 6 GeV
- Tracks required to be in Velo pix & FT acceptance

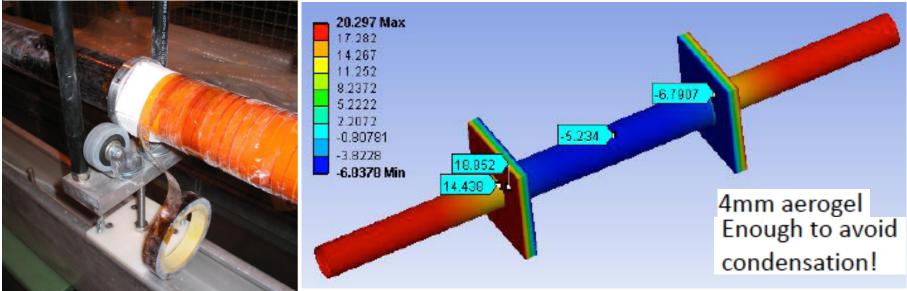
Si design

- 250 µm thick
- Three different sensor types to take into account different track densities
 - nominal: 190 μm wide strips,
 10 cm long
 - intermediate: 95 μm wide strips, 10 cm long (2)
 - high density: 95 μm wide strips, 5 cm long, on a single piece of silicon (4)



Outer box

- Need to put detector in box to exclude light, electrical noise and provide an inert environment (N₂)
- Must have thin entrance and exit windows
- Must seal to beam pipe


		X		bl	e	
	Parts	Material	Thickness (μm		RL (%X₀) (2<η<4.9)	
	Sensor	Si	250	260	0.20	
	3611501	AI	10	200	0.29	
id	ASIC	Si+ Al	120	120	0.002	
Hybrid		Kapton	100			
Т	Hybrid	Ground Al	11	217	0.17	
	Flex	Traces, wirebonds	6			
		Thermal epoxy	100			
Kapton		Kapton	100	133	0.40	
	Cable	Ground, traces, epoxy	11 + 2 x 11/2 + 11	133	0.16	
		POCO foam	3000 (1/2)		0.34	
		CFRP face	2x130 (1⁄2)			
	Module Stave	Ероху	4 x 50 (½)	3460 (1757)		
	Oldve	Titanium	2x φ=2.2, t=0.12 mm			
		Cooling fluid	-			
	UTaX				0.96	
Box Grap		Graphite, glue, Kevlar	2 x 400		0.34	
	Air		430 mm	-	0.14	
Av	g. 2<η<4.9				4.36	

LHCC, March 4, 2014

LHCC, March 4, 2014

Thermal simulations & measurements from Kaan

Aerogel shows a sufficient insulation for 5mm thickness (compressed 3,5mm including Kapton)

No condensation was present at any point

Higher relative humidity inside the box must be avoided to keep the heat transfer coefficient low

For -10° C one should extend the insulation to the outside of the box

Bake out kapton heaters (0.2mm thickness) can be implemented with this configuration, the aerogel gives a dT of more than 100°C to the outer surface.

LH

Downstream tracking

 Efficiency increased by requiring that T-station track is not near center of the detector

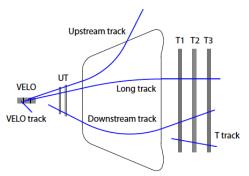


Table 4.14: Performance of the Downstream tracking algorithm on samples of simulated $D^* \rightarrow D^0(\rightarrow K_s^0\pi\pi)\pi$ events. Any inefficiency from the Seeding algorithm is not included in these numbers.

	Current LHCb [%]	Upgrade LHCb [%	
	$\nu = 2$	$\nu = 3.8$	$\nu = 7.6$
Ghost rate	39.3	41.5	54.6
Reconstruction efficiency			
strange daughters	79.6	71.0	62.7
strange daughters, $p > 5 \text{GeV}/c$	84.1	75.3	67.5
strange daughters, $p > 5 \text{GeV}/c, p_{\text{T}} > 400 \text{MeV}/c$	-	81.7	76.3
strange daughters from D or B	84.3	79.1	73.2
strange daughters from D or B, $p > 5 \text{GeV}/c$	87.5	81.5	76.1
strange daughters from D or B, $p > 5 \text{GeV}/c$			
$p_{\rm T} > 400 \mathrm{MeV}/c$	-	85.5	81.4