Measurement of hard double-parton interactions in $W(\rightarrow \ell \nu) + 2$ jet events at $\sqrt{s} = 7$ TeV with the ATLAS detector

Orel Gueta

Tel-Aviv University

On behalf of the ATLAS Collaboration

November 3, 2014

Introduction

- The rate of hard double-parton interactions (DPI) was measured in the W + 2 jets (W + 2j) channel with the ATLAS experiment.
- The kinematics of the jet system were used to extract the fraction of DPI events out of all W + 2j final states.
- The DPI-fraction was used to compute $\sigma_{\rm eff}$, a supposedly process-independent parameter related to the transverse size of the proton.

Phenomenological background

The DPI phenomenology is based on the general expression for $d\hat{\sigma}_{Y+Z}^{(DPI)}(s)$ in $pp \rightarrow Y + Z + (X)$,

$$d\hat{\sigma}_{Y+Z}^{(\text{DPI})}(s) = \frac{1}{1+\delta_{YZ}} \int dx_{i_1} dx_{j_1} dx_{i_2} dx_{j_2} d^2 r_{\perp} \left[A^2(r_{\perp})f_{i_1 j_1}(x_{i_1}, x_{j_1}, \mu_F)f_{i_2 j_2}(x_{i_2}, x_{j_2}, \mu_F)\right] \\ d\hat{\sigma}_{i_1 i_2 \to Y}(x_{i_1}, x_{i_2}, s) d\hat{\sigma}_{j_1 j_2 \to Z}(x_{j_1}, x_{j_2}, s)$$

For W + 2 jets,

- Assume independent interactions \Rightarrow convolution of DPDFs and overlap function;
- factorization ansatz, $f_{ij}(x_i, x_j, \mu_F) = f_i(x_i, \mu_F) f_j(x_j, \mu_F) (1-x_i-x_j) \Theta (1-x_i-x_j)$;
- integrate over the phase space defined by selection cuts;
- define $\sigma_{\text{eff}}(s)$ as the reciprocal of the integral of the overlap function,

$$\sigma_{\rm eff}(s) = \left[\int d^2 r_\perp A^2(r_\perp)\right]^{-1} \implies \hat{\sigma}_{Y+Z}^{\rm (DPI)} = \frac{\hat{\sigma}_Y \cdot \hat{\sigma}_Z}{\sigma_{\rm eff}}.$$

From theory to experiment

Measurements of $\sigma_{\rm eff}$,

Experiment	\sqrt{s} (GeV)	Final state	$\sigma_{ m eff}$
AFS (pp), 1986 [1]	63	4 jets	\sim 5 mb
UA2 (pp̄), 1991 [2]	630	4 jets	>8.3 mb (95% C.L)
CDF (<i>p</i> p̄), 1993 [3]	1800	4 jets	$12.1^{+10.7}_{-5.4} {\rm ~mb}$
CDF (pp̄), 1997 [4]	1800	$\gamma+$ 3-jets	$14.5\pm1.7^{+1.7}_{-2.3}$ mb
DØ (pp̄), 2010 [5]	1960	$\gamma+$ 3-jets	$16.4\pm0.3\pm2.3$ mb
CMS (pp), 2014 [6]	7000	W+ 2 jets	$20.7\pm0.8\pm6.6~\text{mb}$

The parameter $\sigma_{\rm eff}$ is,

- a parton level defined quantity;
- scaling parameter for the probability of a hard secondary scatter;
- assumed to be process and cut independent;
- no dependence on center-of-mass energy seen (considering uncertainties);

▶ related to the transverse size of the region where hard interactions are localized;

- > measured results point to a proton size smaller than geometrical size ($\sigma_{\rm eff} \approx \pi R_p^2 \approx 50 \ mb$).
- A measurement of $\sigma_{\rm eff}$ may be performed through,

$$\sigma_{\text{eff}}(s) = \frac{\hat{\sigma}_{Y}(s) \cdot \hat{\sigma}_{Z}(s)}{\hat{\sigma}_{Y+Z}^{(\text{tot})}(s) - \hat{\sigma}_{Y+Z}^{(\text{SP1})}(s)} = \frac{\hat{\sigma}_{Y}(s) \cdot \hat{\sigma}_{Z}(s)}{f_{\text{DP}}^{(\text{D})} \cdot \hat{\sigma}_{Y+Z}^{(\text{tot})}(s)}.$$

From theory to experiment

The full expression for $\sigma_{\rm eff}$ in the W + 2 jets final state is

 $\sigma_{\text{eff}} = \frac{1}{f_{\text{DP}}^{(D)}} \cdot \frac{N_{W_{0j}} N_{2j}}{N_{W+2j}} \cdot \frac{\mathcal{L}_{W_{0j}+2j_{\text{DPI}}}}{\mathcal{L}_{W_{0j}} \mathcal{L}_{2j}} \cdot \frac{\mathcal{A}_{W_{0j}+2j_{\text{DPI}}}}{\mathcal{A}_{W_{0j}} \mathcal{A}_{2j}} \cdot \frac{\mathcal{C}_{W_{0j}+2j_{\text{DPI}}}}{\mathcal{C}_{W_{0j}} \mathcal{C}_{2j}} \cdot \frac{\varepsilon_{W_{0j}+2j_{\text{DPI}}}}{\varepsilon_{W_{0j}} \varepsilon_{2j}}.$ $\blacktriangleright f_{\text{DP}}^{(D)} \text{ - fraction of } W + 2j \text{ DPI events; } \blacktriangleright N_x \text{ - number of events; } \blacktriangleright \mathcal{L}_x \text{ - luminosity.}$

▶ A - geometrical acceptance; ▶ C - unfolding corrections; ▶ ε - trigger efficiency.

► Take background into account.

This expression can be simplified using the following:

- The assumption of factorisation between the W boson and the 2j system leads to
 - $\mathcal{A}_{W_{0j}+2j_{\mathrm{DPI}}} \cdot \mathcal{C}_{W_{0j}+2j_{\mathrm{DPI}}} = \mathcal{A}_{W_{0j}} \cdot \mathcal{C}_{W_{0j}} \cdot \mathcal{A}_{2j} \cdot \mathcal{C}_{2j}$
- $\bullet~ {\it W}_{0\rm j}+2j_{\rm DPI}$ and ${\it W}_{0\rm j}$ events were collected using the same trigger selection
 - $\varepsilon_{W_{0j}+2j_{DPI}} = \varepsilon_{W_{0j}}$
- The minimum bias trigger was shown to be fully efficient in collecting dijets

•
$$\varepsilon_{2j} = 1$$

 $\implies \sigma_{\text{eff}} = \frac{1}{f_{\text{DP}}^{(D)}} \cdot \frac{N_{W_{0j}}}{N_{W+2j}} \cdot \frac{N_{2j}}{\mathcal{L}_{2j}}$

Main challenge is to measure $f_{\rm DP}^{(\rm D)}$.

DPI in W + 2 jets in ATLAS

Sample	details
Data (<i>W</i>)	All 2010 data run (36 $ m pb^{-1}$)
Data (jets)	All 2010 data run (and related subsets)
AHJ (incl.)	ALPGEN ME, JIMMY v4.31, AUET tune, HERWIG v6.510
SHERPA (incl.)	v1.3.1, default UE tune

- Jets reconstructed with the anti- k_{\perp} algorithm (R = 0.4), defined as having transverse momentum, $p_T > 20$ GeV, and rapidity, |y| < 2.8.
- W + 0j selection: ► All 2010 W data; ► collected with a single lepton trigger; ► 1 lepton (e, μ) with p_T > 20 GeV, |η| < 2.4; ► missing transverse energy, E_T^{miss} > 25 GeV, and mass M_T > 40 GeV; ► no jets.
- W + 2j selection: ► Selection as for W + 0j with the exception of requiring exactly two jets.
- Dijet selection: ► Partial 2010 dataset (184 µb⁻¹), collected with the minimum bias trigger; ► exactly two jets.

Strategy of the analysis

- Possible observables to measure $f_{\rm DP}^{(\rm D)}$:
 - Transverse momentum of the W (requires $E_{\rm T}^{\rm miss}$);
 - ▶ *p*_T distributions of jets (significant JES uncertainties);
 - Azimuthal correlation between jets (pile-up and UE affect it);
- The normalized transverse momentum balance between the jets, Δⁿ_{jets}, is chosen. The balance without normalization, Δ_{jets}, is used for cross-checks.

Orel Gueta (ATLAS @ Tel-Aviv University)

Strategy of the analysis

$$\sigma_{\rm eff} = \frac{1}{f_{\rm DP}^{\rm (D)}} \cdot \frac{N_{W_{0j}}}{N_{W+2j}} \cdot \frac{N_{2j}}{\mathcal{L}_{2j}} \qquad f_{\rm DP}^{\rm (D)} = \frac{N_{W_{0j}+2j_{\rm DPI}}}{N_{W+2j}} = \frac{N_{W_{0j}+2j_{\rm DPI}}}{N_{W_{2j}} + N_{W_{0j}+2j_{\rm DPI}}}$$

• Estimate $f_{\rm DP}^{\rm (D)}$ by fitting the data to a combination of two templates,

$$(1-f_{\mathrm{DP}}^{(\mathrm{D})})\cdot A+f_{\mathrm{DP}}^{(\mathrm{D})}\cdot B.$$

- Template A DPI-off: AHJ sample of SPI W + 2 jets.
- Template *B* Dijets: Dijet sample extracted from data.
- Measure the dijet cross section (at detector-level, N_{2j}/\mathcal{L}_{2j}), $N_{W_{0j}}$, and N_{W+2j} .
- Subtract background samples from data.
- Apply a pile-up correction factor to $f_{\rm DP}^{(\rm D)}$.
- Contribution of the process $(W + 1j)_{primary} \oplus (1j)_{secondary}$ found negligible.
- Demonstrate relation between detector level, $f_{DP}^{(D)}$, and parton level, $f_{DP}^{(P)}$.

Multiple-parton interactions in AHJ

- MCs incorporate multiple-parton interactions (MPI) as part of the description of the underlying event. These mostly include soft interactions, but some may be hard and produce jets.
- Hard MPI can be regulated in AHJ by rejecting events with MPI partons with p_T above $p_T^{max} = 15$ GeV.
- Plots show comparison of DPI-on/off in $\begin{array}{l} \mathrm{AHJ} \text{ for } \Delta_{\mathrm{jets}}^{n} = \frac{|\vec{p}_{\mathrm{T}}^{\prime_{1}} + \vec{p}_{\mathrm{T}}^{\prime_{2}}|}{|\vec{p}_{\mathrm{T}}^{\prime_{1}}| + |\vec{p}_{\mathrm{T}}^{\prime_{2}}|} \ (\text{top}) \text{ and} \\ \Delta_{\mathrm{jets}} = |\vec{p}_{\mathrm{T}}^{f_{1}} + \vec{p}_{\mathrm{T}}^{f_{2}}| \ (\text{bottom}). \end{array}$
- The distributions show sensitivity to the effect of double-parton interactions, especially at low values of $\Delta_{\rm jets}^n$ and $\Delta_{\rm jets}$, where more balanced dijet systems populate the histograms.

Validation of the analysis strategy

 $(u_P\uparrow)$ Mimic the data by replacing it with inclusive AHJ and fitting the templates to extract $f_{DP}^{(MC)}$ (DPI fraction in MC). Consistent results are achieved for $f_{DP}^{(MC)}$ with Δ_{jets}^{n} and Δ_{jets} .

 $\begin{array}{c} \underbrace{(\textbf{Right})}_{\text{Might}} \quad \text{Vary } p_{\text{T}}^{\max} \text{ and compare to the value of } f_{\text{DP}}^{(\text{P})}. \\ \\ \text{Agree within errors} \Rightarrow \text{detector-level} \\ \\ \text{measurement directly related to parton-level.} \end{array}$

Uncertainties

- Uncertainties on $f_{\rm DP}^{\rm (D)}$:
 - "Theoretical" uncertainty due to generator model. Alternate between AHJ or SHERPA; change the value of p_T^{max} in AHJ.
 - Jet energy scale (JES) and Jet energy resolution (JER) the value of calibrated jet energies is shifted up and down (JES) or smeared (JER).
 - Physics backgrounds and lepton response estimated separately for the electron and muon channels by varying the normalization and shape of the background.
 - Pile-up a correction is used to estimate the effect of pile-up on $f_{\rm DP}^{\rm (D)}$, using a scaling parameter, $r_{\rm pile-up} = 1.17 \pm 0.15$ (stat.). The uncertainty on this parameter is propagated as a systematic.
- Uncertainties on $\sigma_{\rm eff} = 1/f_{\rm DP}^{(\rm D)} \cdot N_{W_{0j}}/N_{W+2j} \cdot N_{2j}/\mathcal{L}_{2j}$:
 - Uncertainties on $f_{\rm DP}^{\rm (D)}$ are propagated.
 - Physics backgrounds and lepton response apart from the effect on $f_{DP}^{(D)}$, the impact of the uncertainty on the ratio $N_{W_{0i}}/N_{W+2i}$ is propagated.
 - Uncertainty on the luminosity is propagated.

Uncertainties

Fractional uncertainties on $f_{\rm DP}^{\rm (D)}$:

Systematic source	Unc [%]
Theory	10
Pile-up	13
Jet energy scale	12
Jet energy resolution	8
Background & lepton	11
Total systematic	24
Total statistical	17

Fractional systematic uncertainties on σ_{eff} :

Systematic source	Unc. [%]
$f_{\rm DP}^{\rm (D)}$	24
Background & lepton response	3
Luminosity	3
Total systematic	+33 -20
Total statistical	17

Extraction of $f_{ m DP}^{ m (D)}$ and the corresponding $\sigma_{ m eff}$

Extract f^(D)_{DP} by performing a fit to the distribution of Δⁿ_{jets} of Templates A and B of the form (1 − f^(D)_{DP}) · A + f^(D)_{DP} · B.

$$f_{
m DP}^{
m (D)} = 0.08 \pm 0.01 \; {
m (stat.)} \pm 0.02 \; {
m (sys.)} \ \sigma_{
m eff} = 15 \pm 3 \; {
m (stat.)} \, {}^{+5}_{-3} \; {
m (sys.)} \; {
m mb}$$

Particle-level distributions

- To allow the results of this study to be used for comparisons with future MPI models, unfolded distributions of key observables are given.
- Unfolding performed using AHJ sample event selection applied at particle level.
- Data are unfolded using a Bayesian unfolding algorithm, using two iterations, implemented in the RooUnfold package.
- Here the data are compared to the particle-level distributions from AHJ.
- The particle-level distributions are not used to extract the fraction of DPI events and the corresponding $\sigma_{\rm eff}.$

Summary

- The fraction of DPI events in the W + 2j channel, $f_{\rm DP}^{\rm (D)}$, was measured with the ATLAS experiment.
- *f*^(D)_{DP} was extracted from a fitted combination of two templates, DPI-off (based on AHJ) and DPI-on (dijet events from data) and σ_{eff} was extracted.
- Result for σ_{eff} are consistent with previous measurements at lower energies. Dependence on \sqrt{s} can not be confirmed nor excluded.

Backup Slides

Event selection - more information

Object selection:

Objects	Selection
Electron	Isolation, $p_{T} > 20~{ m GeV},~ \eta < 2.47,$ excluding $1.37 < \eta < 1.52$
Muon	Isolation, $p_{\mathcal{T}} > 20~{ m GeV},~ \eta < 2.4,$ cuts on track to ensure prompt muon
Jets	anti- k_{\perp} jets, $R=0.4,~p_T>20~{ m GeV},~ y <2.8,~{ m JVF}>0.75,~\Delta R({ m l},{ m j})>0.5$

Background composition:

Channel	Source
QCD multi-jet	Data-driven, <code>Pythia</code> 6 (\sim 14% e-channel, \sim 6% μ -channel)
$W \to \tau \nu$	PYTHIA 6 (\sim 2% for both <i>e</i> -channel and μ -channel)
$Z \rightarrow ll$	<code>Pythia</code> 6 ($\sim 1\%$ e-channel, $\sim 4\%\mu$ -channel)
Di-boson	$MC@NLO$ + JIMMY + Herwig ($\sim 1\%$ for both channels)
Single top quark	MC@NLO + JIMMY + HERWIG (~ 0.5% for both channels)
tī	Powheg $+$ Pythia 6 (\sim 1% for both both channels)

Validation of the analysis strategy

- Set $p_T^{max} = 3.5 \text{ GeV}$ in AHJ, which is then equivalent to the SHERPA cut in the no-MPI setting.
- Plot $\Delta_{jets}^n = \frac{|\vec{p}_T^{J_1} + \vec{p}_T^{J_2}|}{|\vec{p}_T^{J_1}| + |\vec{p}_T^{J_2}|}$ and fit $f_{DP}^{(MC)}$ using AHJ and SHERPA. Do the same for Δ_{jets} (not shown here.)
- The values of $f_{\rm DP}^{\rm (MC)}$ using AHJ and SHERPA are found to be consistent, $f_{\rm DP}^{\rm (AHJ)} = 0.034 \pm 0.006$ and $f_{\rm DP}^{\rm (S)} = 0.031 \pm 0.008$.

Particle-level distributions

- The fitted value of $f_{\rm DP}^{\rm (D)}$ for the particle-level distributions is slightly different than that for the detector-level distributions, due to differences in phase-space between the two.
- The particle-level distributions are not used to extract $f_{\rm DP}^{(D)}$ and the corresponding $\sigma_{\rm eff}$ as the main results of the analysis. These distributions are given as reference for future studies.