MPI and small-x QCD in CMS

A. Knutsson (Universiteit Antwerpen) on behalf of CMS Collaboration

MPI@LHC Krakow, 3 – 7 November, 2014

- Leading tracks and track-jets at very low p_{τ}
- Azimuthal correlations of jets widely separated in η
- Forward-Central Jet Correlations

CMS-PAS-FSQ-12-026, CMS-PAS-FSQ-12-032 - http://cds.cern.ch/record/1546365 CMS-PAS-FSQ-12-002 - http://cds.cern.ch/record/1547075 CMS-PAS-FSQ-12-008 - http://cds.cern.ch/record/1643105 Normalized integrated event cross-sections of leading tracks and track-jets at very low p_T

Analyses motivated by:

Jet production and the inelastic pp cross section at the LHC

A. Grebenyuk^a, F. Hautmann^b, H. Jung^{a,c}, P. Katsas^a and A. Knutsson^a

Abstract

We suggest that, if current measurements of inclusive jet production for central rapidities at the LHC are extended to lower transverse momenta, one could define a visible cross section sensitive to the unitarity bound set by the recent determination of the inelastic proton-proton cross section.

arXiv:1209.6265v1 [hep-ph] 27 Sept 2012 Phys.Rev. D86 (2012) 117501

- Total cross-section for $2 \rightarrow 2$ process given by

$$\sigma(p_{T\ min}) = \int_{p_{T\ min}} dp_T^2 \int_{-\infty}^{\infty} dy \frac{d^2\sigma}{dp_T^2 \, dy}$$

- Divergent towards low $p_{T,min}$ and eventually the total 2 \rightarrow 2 cross-section becomes larger than the total inelastic cross-section.
- At LHC this happens around ~5 GeV at LHC.

- Total cross-section for 2 \rightarrow 2 process given by

$$\sigma(p_{T\ min}) = \int_{p_{T\ min}} dp_T^2 \int_{-\infty}^{\infty} dy \frac{d^2\sigma}{dp_T^2\ dy}$$

- Divergent towards low $p_{T,min}$ and eventually the total 2 \rightarrow 2 cross-section becomes larger than the total inelastic cross-section.
- Thus, in theory, the cross-section needs to be tamed.

For example, in Pythia, the rise of the $2\rightarrow 2$ cross-section is "tamed" by

1. Regularization factor for the cross-section

$$\sigma \rightarrow \sigma \times \frac{\alpha_s(p_t + p_{t0})}{\alpha_s(p_t)} \frac{p_t^4}{\left(p_t^2 + p_{t0}^2\right)^2}$$

where p_{T0} is determined by tuning to data.

2. MPI:
$$\langle n_{MPI} \rangle = \sigma_{2 \rightarrow 2} / \sigma_{Total}$$

- Total cross-section for $2{\rightarrow}2$ process given by

$$\sigma(p_{T\ min}) = \int_{p_{T\ min}} dp_T^2 \int_{-\infty}^{\infty} dy \frac{d^2\sigma}{dp_T^2\ dy}$$

- Divergent towards low $p_{T,min}$ and eventually the total 2 \rightarrow 2 cross-section becomes larger than the total inelastic cross-section.
- Thus, in theory, the cross-section needs to be tamed.

For example, in Pythia, the rise of the $2\rightarrow 2$ cross-section is "tamed" by

1. Regularization factor for the cross-section

$$\sigma \rightarrow \sigma \times \frac{\alpha_s(p_t + p_{t0})}{\alpha_s(p_t)} \frac{p_t^4}{\left(p_t^2 + p_{t0}^2\right)^2}$$

where p_{T0} is determined by tuning to data.

2. MPI:
$$\langle n_{MPI} \rangle = \sigma_{2 \rightarrow 2} / \sigma_{Total}$$

Can be studied in a range accessible by the experiments.

• Measurement possible to do with tracks and track jets.

- Different shapes of the cross-sections. The jet events are shifted towards higher values. More than just the leading particle clustered in the jet. UE important for the jets.
- When radius parameter in the jet algorithm is decreased the shape of the jet cross-section approaches the leading track cross-section.

[GeVÌ

R=0.5 / R=0.1

10

P T min, leading jet

0.5

CMS and T2 Detectors

- Common CMS+TOTEM data taking. Run with very low pile-up at \sqrt{s} = 8 TeV (2012). (Non standard high β^* = 90m optics configuration.)
- MB events triggered by TOTEM T2: At least one track with $\rm p_{_{t}}$ > 40 MeV in 5.3 < $|\eta|$ < 6.5
- Track selection: |η| < 2.4, p, > 0.4 GeV

 \rightarrow Measurement of the **normalized integrated** *leading track* cross-section.

- Common CMS+TOTEM data taking. Run with very low pile-up at \sqrt{s} = 8 TeV (2012). (Non standard high β^* = 90m optics configuration.)
- MB events triggered by TOTEM T2: At least one track with $\rm p_{_{t}}$ > 40 MeV in 5.3 < $|\eta|$ < 6.5
- Track selection: |η| < 2.4, p > 0.4 GeV

 \rightarrow Measurement of the normalized integrated *leading track* cross-section.

• Track-jets:

```
Anti-k_{t} algorithm. R = 0.5.
```

Input: Tracks with $|\eta| < 2.4$ and $p_1 > 0.4$ GeV.

Jet selection: The leading jet in $|\eta| < 1.9$ with $p_1 > 1$ GeV.

 \rightarrow Measurement of the **normalized integrated** *leading track-jet* cross-section.

- Common CMS+TOTEM data taking. Run with very low pile-up at \sqrt{s} = 8 TeV (2012). (Non standard high β^* = 90m optics configuration.)
- MB events triggered by TOTEM T2: At least one track with $\rm p_t$ > 40 MeV in 5.3 < $|\eta|$ < 6.5
- Track selection: |η| < 2.4, p > 0.4 GeV

 \rightarrow Measurement of the **normalized integrated** *leading track* cross-section.

 Track-jets: Anti-k_t algorithm. R = 0.5. Input: Tracks with |η| < 2.4 and p_t > 0.4 GeV. Jet selection: The leading jet in |η| < 1.9 with p_t > 1 GeV.

 \rightarrow Measurement of the **normalized integrated** *leading track-jet* cross-section.

 Measurement corrected to stable particle level defined by cuts as above (but with no p_t or η restriction on the charged particles entering the jet algorithm)

 Normalized integrated charged-particle or charged particle jet event cross-section as a function of p_{T,min} for events with a leading charged particle (jet) with p_T > p_{T,min}.

$$D(p_{\rm T,min}) = \frac{1}{N_{\rm events}} \sum_{p_{\rm T,leading} > p_{\rm T,min}} \Delta p_{\rm T, leading} \left(\frac{dN_{\rm ch}}{dp_{\rm T,leading}}\right)$$

• Measurement to normalized to events (N_{events}) with a leading charged particle with $|\eta|$ <2.4 and p_T > 0.4 GeV

Normalized Leading Charged Particle Cross-sections

Normalized cross-sections for events with a central leading charged particle with $p_T > p_{T,min}$ as a function $p_{T,min}$.

- Normalized event cross-sections.
 - \rightarrow No sensitivity to particle multiplicities in events.
 - → Distribution converges to one by construction. Looking for effects at low p_{τ} - MC scaled to data at $p_{\tau_{min}}$ = 9 GeV.
- Large difference between models. Tune sensitivity.
- Pythia and Herwig do not describe the data. (*)
- Cosmic Ray Monte Carlos: EPOS good. QGSJET fails.

Normalized Leading Charged Particle Jet Cross-sections

Normalized cross-sections for events with a central leading charged particle with $p_T > p_{T,min}$ as a function $p_{T,min}$.

- Normalized event cross-sections.
 - \rightarrow No sensitivity to jet multiplicities in events.
 - \rightarrow Distribution converges to one by construction.

Looking for effects at low p_{T} - MC scaled to data at $p_{T,min}$ = 14 GeV.

- Larger difference between models. Tune sensitivity.
- Pythia and Herwig do not describe the data. (*)
- Cosmic Ray Monte Carlos: EPOS good. QGSJET fails.

CMS Preliminary CMS Preliminary Inclusive pp $\sqrt{s} = 8$ TeV Inclusive pp $\sqrt{s} = 8$ TeV m_{min} / σ_{vis} m_{in})/ σ_{vis} N_{ch} (p > 40 MeV) > 0 in 5.3 < η < 6.5 or -6.5 < η < -5.3 N., (p_ > 40 MeV) > 0 in 5.3 < η < 6.5 or -6.5 < η < -5.3 Charged Particles, hl < 2.4 10 Charged Particles bil < 2.4 10 പ് പ് ۸ particle. particle σ(**p**_{T, leading ch. F} α(**p**_{T, leading} CMS CMS Pythia8 4C Pvthia6 Z2' QGSJetII-04 Pythia6 D6T EPOS LHC Pythia6 (default, MPI on) Pythia6 (default, MPI off) Herwia++ UE-EE-3C 10⁻ 10-4 Pythia6 (default, MPI off, no sat) MC/Data MC/Data 1.5 1.5 0.5 0.5 10 10 p_{T min} [GeV] p_{T min} [GeV]

Leading charged particles

Leading charged particle jets

- Different shapes for leading jets and leading charged particles.
- More activity than just the leading track clustered in the jet. Thus, UE important for the jets.
 - \rightarrow The p_t is shifted towards higher value in jets compared to leading charged particles.
 - → Larger spread between different MC predictions in the jet measurement.
 - \rightarrow Larger deviation between MC and data for the jets compared to the charged particles.
 - \rightarrow MC somewhat better description of the charge particle measurement.

Azimuthal decorrelations of jets widely separated in η

• Forward Jets:

Classic final state for studies of higher order QCD, parton dynamics beyond DGLAP, BFKL effects.

• Azimuthal de-correlations between di-jets: At LO: $\Delta \phi = 180$

Higher order reactions: $\Delta \phi < 180$

In DGLAP the momentum balance between the two jets is expected to be more conserved, while H.O BFKL emissions expects to give a flatter $\Delta \phi$ distribution.

Additional effects from using unintegrated gluon densities. Input k_t from gluon PDF > 0 $\rightarrow \Delta \phi$ < 180 already at LO

• Jets with large rapidity separation:

Large rapidity range between jets to further open up phase space for more emissions.

Larger separation between jets \rightarrow more decorrelation in $\Delta \phi$.

CMS-FSQ-12-002

- $\sqrt{s} = 7$ TeV, Luminosity ≈ 5 pb⁻¹
- Calorimeter jets anti-kt algorithm with R=0.5.
- Events with at least two jets with $p_{t,jet}$ >35 GeV and $|\eta|$ <4.7. The two jets with largest rapidity separation selected.
- Measurement corrected to stable particle level
- Observables:
 - Azimuthal angle between the two jets with largest rapidity separation: : $\Delta \phi$

- Fourier coefficients,
$$C_n : d\sigma/d(\Delta \phi) \sim \sum C_n \cos(\pi - \Delta \phi)$$

$$C_{1} = <\cos(\pi - \Delta \phi) > C_{2} = <\cos(2^{*}(\pi - \Delta \phi)) > C_{3} = <\cos(3^{*}(\pi - \Delta \phi)) >$$

- Ratios C_2/C_1 and C_3/C_2

These quantities are measurement in 3 bins of rapidity separation between the jets: $0 < \Delta y < 3$

Previously measured up to $\Delta y < 6.0$.

Azimuthal decorrelations – $\Delta \phi$

Events with at least two hard jets with $|\eta|$ <4.7 and $p_{t,iet}$ >35 GeV

Measure azimuthal difference between the two jets with largest rapidity separation selected.

- Larger azimuthal decorrelation with increasing Δy
- Herwig++ provides the best description of data
- Pythia6/8 too large decorrelation
- Sherpa with 4 final state partons – too much correlation
- CASCADE k_t-factorization based (CCFM) – too strong decorrelations

Azimuthal decorrelations – AO and MPI

Pythia with and w/o angular ordering (AO) or MPI.

- Switching off angular ordering or MPI
 - approximately the same correlation at small Δy
 - stronger correlation at medium and large Δy

Albert Knutsson

$C_N = \langle \cos (N(\pi - \Delta \phi)) \rangle$

- Fourier coefficients, C_n , expected to be sensitive to properties of noncollinear dynamics $C_1 = \langle \cos(\pi - \Delta \phi) \rangle$ $C_2 = \langle \cos(2^*(\pi - \Delta \phi)) \rangle$
- Herwig++ and Pythia6/8 qualitatively describe $C_N = < \cos(N(\pi \Delta \phi)) >$
- Sherpa overestimates the data

 $C_3 = (\cos(3^*(\pi - \Delta \phi)))$

- CCFM based CASCADE predicts too weak angular correlation
- BFKL NLL calculations (arXiv:1302.7012 [Ducloue et al])
 - only valid for $\Delta y > 4$
 - parton level predictions. However, small effect from hadronization compared to systematic uncertainty
 - Too strong angular correlation compared to data

C_2/C_1 and C_3/C_2

- DGLAP contributions are expected to partly cancel in the C_{n+1}/C_n ratios.
- C_{n+1}/C_n described by LL DGLAP based generators towards low Δy
- Pythia8, Pythia6 Z2 overestimate C₂/C₁
- Herwig++ underestimate C₂/C₁
- Sherpa overestimates data
- CCFM based CASCADE predicts too small C_{n+1}/C_n
- At Δy > 4 theoretical BFKL NLL describe in particular C₂/C₁ within uncertainties

Pythia with and w/o angular ordering or MPI.

- AO and MPI improve the description of the data, In particlular at high Deltay
- C₂/C₁ and C₃/C₂ are more sensitive to AO and MPI conditions

Forward-Central Jet Correlations

Data

3.2 pb⁻¹ from 2010 low pile-up pp collisions at $\sqrt{s} = 7$ TeV

Physics selection

Events with at least one forward $(3.2 < |\eta| < 4.7)$ and at least one central $(|\eta| < 2.8)$ jet with $p_T > 35$ GeV

Different scenarios

- 1) Inclusive fwd+cntrl jets
- 2) Inside jet veto (p_{T,inside jet} < 20 GeV)
- 3) Inside jet tag (p_{T,inside jet} > 20 GeV)
- 4) Outside jet tag (p_{T,outside jet} > 20 GeV)

$\Delta \phi$ in bins of $\Delta \eta$ for different scenarious

• All MCs describe the data, considering the fairly large experimental uncertainty

$$\eta * = \eta_{inside-jet} - (\eta_{central-jet} + \eta_{forward-jet})/2$$

Position of inside jet expected to give additional sensitivity to PS algorithms and color coherence effects.

$\Delta \eta^{out} = \min(|\eta_{outside-jet} - \eta_{central-jet}|, |\eta_{outside-jet} - \eta_{forward-jet}|)$

Expected to give additional sensitivity to PS algorithms and color coherence effects.

Monte Carlo describes the data.

Summary / Conclusions

Leading track and leading track-jet event cross-sections at very low Pt

- Probe the transition from the pertubative to the non-pertubative regions, and are sensitive to the "taming of the cross-section".
- Difficult to describe by MC models. Cosmic Ray MC EPOS best.
- Difference between the charge particle and the charge particle jet measurement. Jets larger sensitivity to MPI and UE larger separation between tunes and models.

Azimuthal correlations of jets with large rapidity separation

- Azimuthal correlations measured up to $\Delta y < 9.4$.
- Herwig best. Pythia too decorrelated.
- Largest contribution from MPI at small $\Delta\phi$ and large Δy

Central-Forward Jet Correlations in different scenarios

- Also properties of additional jets measured
- MPI contribution largest at central η^* (position of inter-leading jet)
- MC describes the data within large exp. uncertainty

6

Outside jet p_{T}

 All tested MCs describe the data, considering the fairly large experimental uncertainty

- Tame the divergence by using saturated PDFs.
- CASCADE. KT-factorization based MC generator.
 - Low-pT behavior from:
 - ME dependence (low-p_ rise from $k_{_{\rm T}}$ << p_ , slower rise for $k_{_{\rm T}}$)

Cross-section of jets with 4 < p_T < 100 GeV $|\eta|$ < 1.9

MC area normalised to data.

Data well described at low pt. MC fails at high pt.

Older measurements from CMS

Events with at least one jet with 3.5<| η |<4.7 and $p_{t,iet}$ >35 GeV

- All predictions describe the data within the uncertainties.
- NLO prediction (NLOJET++) too high, but agrees with the data within the large theoretical and experimental uncertainties.
- NLO+PS (POWHEG+PYTHIA6) best.

JHEP 1206 (2012) 036 arXiv:1202.0704

Events with at least one jet with

- 3.5<|η|<4.7 • p_{t,jet}>35 GeV
- and one central jet with

- Forward jet cross-section somewhat steeper than central jet cross-section.
- Comparison to several generators. (ratios on next slide)

JHEP 1206 (2012) 036 arXiv:1202.0704

Albert Knutsson

- Difference in MC description of data between the forward and the central jet.
- Largest shape difference for forward jet.
- Pythia6 and Pythia8, as well as CCFM based CASCADE problem with normalization of the central jet and shape of the forward jet.
- Herwig6, Herwig++, and the BFKL inspired MC HEJ describe the data best.

JHEP 1206 (2012) 036 arXiv:1202.0704

Inclusive over Exclusive Di-jet Cross-section

arXiv:1204.0696

Jets reconstructed with the anti-kT algorithm (R=0.5) $p_{t,jet}\!\!>\!\!35$ GeV and $|\eta_{jet}|\!<\!\!4.7$

Observable: Rapidity difference between jets, Δy

Inclusive jets: All jet pairs in the events considered Exclusive jets: Events with exactly two jets above the threshold Mueller-Navelet jets: Most forward and backward jet in the inclusive sample

- Increasing $\Delta y \rightarrow Larger$ phase space for radiation
- Pythia6 (Z2) and Pythia8 (4C) agrees well with data
- Herwig++ (EE3) and HEJ+Ariadne too high at high Δy
- Small effect from MPI (not shown)
- Cascade off

arXiv:1204.0696

Jets reconstructed with the anti-kT algorithm (R=0.5) $p_{t,jet}{>}35$ GeV and $|\eta_{jet}|{<}4.7$

Observable: Rapidity difference between jets, Δy

Inclusive jets: All jet pairs in the events considered Exclusive jets: Events with exactly two jets above the threshold Mueller-Navellet jets: Most forward and backward jet in the inclusive sample

- Low Δy: Ratio(MN/exclusive) per definition *smaller* than Ratio(inclusive/exclusive)
- High Δy: Ratio(MN/exclusive) per definition same than Ratio(inclusive/exclusive)
- MC data comparison: same conclusion as on previous slide

General conclusion: No visible effects beyond collinear factorization + LL parton-showers