Associated Boson Production MPI@LHC 2014

Albert Frithjof Bursche on behalf of the LHCb collaboration

University of Zurich

Tuesday November 4th, 2014

OUTLINE

LHCb

Experimental Setup Data Taking Conditions

MOTIVATION

Parton Density Functions

Measurements

Inclusive Z Production W Boson Production Associated Production of a Z Boson with Jets Associated Production of a Z Boson with Beauty Jets Associated Production of a Z Boson with a D Meson

LHCb Experiment

2 of 24

Kaon Identification $\varepsilon \approx 90\%$, mis-ID< 5%

Muon Identification $\varepsilon \approx 97\%$, mis-ID $\approx 0.7\%$ at high p_T

2 of 24

LHCb Experiment

DATA TAKING IN LHCb in 2011

LHCb Average Mu at 3.5 TeV in 2011

- High pileup $\mu \leq 2$.
- Since 2011 the luminosity is *levelled* leading to stable conditions for the full year.

3 of 24

LHCb SENSITIVITY TO PARTON DENSITY FUNCTIONS

unique kinematic acceptance

•
$$Q^2 = M^2$$
, $x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}$

 combination of KNOWN high-x with UNEXPLORED low-x partons

LHCb SENSITIVITY TO PARTON DENSITY FUNCTIONS

unique kinematic acceptance

•
$$Q^2 = M^2$$
, $x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}$

- combination of KNOWN high-x with UNEXPLORED low-x partons
- For Z^0 , W^{\pm}
 - $\Box Q^2 \approx 10000 \ {
 m GeV}^2$
 - □ x_2 down to $1.7 \cdot 10^{-4}$.

Theory Codes and Parton Distribution Functions

- Fixed order in the pertubation series in α_s:
- $\mathcal{O}(\alpha_s)$ MCFM
- $\mathcal{O}(\alpha_s^2)$ FEWZ
 - Leading Logarithm
 - PowHEG with parton shower from PYTHIA
 - PYTHIA
 - Resum all logarithms
 - ResBos

- Before LHC
 - □ MSTW08
 - □ CT10
 - JR09
- After the start of LHC
 - NNPDF 2.3
 - ABM12

Those include results from LHCb-PAPER-2012-008

References are links behind the names.

Inclusive Z Production at $\sqrt{s} = 7$ TeV

$$\sigma_{Z
ightarrow \mu\mu} = 75.4 \pm 0.3 \pm 1.9 \pm 2.6$$
pb $pprox 53000$ events

qq̄ initial state

•
$$p_{T,\mu} > 20 \, \text{GeV}$$

•
$$60 < m_{\mu\mu} < 120 \, {
m GeV}$$

Measurements with all charged leptons in the final state

6 OF 24

Z: PROBE PQCD WITH Z p_T

$$W^{\pm} \rightarrow \mu^{\pm} \nu$$
-Selection

$W^{\pm} \rightarrow \mu^{\pm} \nu$ -Selection

- **2**011 dataset, $975 \pm 17 \text{ pb}^{-1}$ at 7 TeV
- Isolated muons $\sum_{\Delta R < 0.5} p_T < 2 \text{ GeV}$
- $20 < p_T^{\mu} < 70 \text{ GeV}$
- Veto second muon in the event
- $\frac{E_{Calo}}{p_{\mu}} < 4\%$
- Impact Parameter less than 40 µm
 - This leads to a purity of 77%
 - Needs to be determined precisely

- Signal Template from Simulation (Pythia corrected to ResBos).
- $W^{\pm} \rightarrow \tau \nu$ from Pythia, normalised to W cross section.
- $Z^0 \rightarrow \tau \tau$ from PYTHIA, normalised to Z cross section.
- $Z^0 \rightarrow \mu\mu$ from PYTHIA corrected to RESBOS and normalised to Z.
- K^{\pm}, π^{\pm} decay in flight shape from data and normalisation from fit.

 $\sqrt{\mathrm{s}}=7~\mathrm{TeV}$ arXiv:1408.4354 submitted to JHEP

9 of 24

TOTAL CROSS SECTION

10 of 24

DIFFERENTIAL CROSS SECTION

DIFFERENTIAL CROSS SECTION RATIO

EXTRAPOLATION TO ATLAS

13 of 24

$Z^0 \rightarrow \mu \mu$ plus Jet Event

Z plus Jets at $\sqrt{\rm s}=7~{\rm TeV}$

- Measurements only in $Z \rightarrow \mu \mu$ final state
- Jet Algorithm \overline{k}_T (R=0.5)
- Use tracks and neutral clusters
- $2 < \eta^{\text{Jet}} < 4.5$
- $\Delta R_{\text{jet},\mu} > 0.4$
- Largest uncertainty from JES

$\sqrt{s}=7~{\rm TeV}$ jhep 01 (2014) 033

15 of 24

Z +jets: $Z p_T$ and $\Delta \Phi$

This is also measured for the $p_T > 10$ GeV threshold.

 $\sqrt{s}=7~{\rm TeV}$ jhep 01 (2014) 033

16 of 24

Z +JETS: JET p_T

17 of 24

Z plus b-jets

 $\sqrt{s}=7~{\rm TeV}$ lhcb preliminary (LHCB-PAPER-2014-055 to be submitted to JHEP)

18 of 24

Z plus b-jets

Overview

- $Z \rightarrow \mu^+ \mu^-$ as before
- jets as before
- again with two p_T thresholds
- add *b*-tag from secondary vertex to leading jet

 $\sqrt{\mathrm{s}}=7~\mathrm{TeV}$ lhcb preliminary (LHCB-PAPER-2014-055 to be submitted to JHEP)

18 of 24

Z plus b-jets

Overview

- $Z \rightarrow \mu^+ \mu^-$ as before
- jets as before
- again with two p_T thresholds
- add *b*-tag from secondary vertex to leading jet

BACKGROUND

- light jets
- charm jets

 $\sqrt{\mathrm{s}}=7~\mathrm{TeV}$ lhcb preliminary (LHCB-PAPER-2014-055 to be submitted to JHEP)

18 of 24

TAGGING *b*-JETS

- Use the strategy already in place in the incl. *b* trigger
- Form secondary vertices from two, three, and four particles
- Look at corrected mass

$$m_{
m corr} = \sqrt{m^2 + p_{\perp}^2} + p_{\perp}$$

where p_{\perp} it measured with respect to the geometrical flight direction of the secondary vertex.

Use templates from simulation for light, beauty and charm jets.

Jets thresholds of $p_T > 10$ GeV and 20 GeV.

 $\sqrt{s} = 7 \text{ TeV}$ lhcb preliminary (lhcb-paper-2014-055 to be submitted to JHEP)

20 of 24

Z + b-jet Cross Section

Z plus D

$$\sqrt{s} = 7 \,\,{
m TeV}$$
 Jhep 04 (2014) 091

22 of 24

Z plus D

- *Z* from PV with zero lifetime
- D from secondary vertex but associated to the same PV as the Z
 Overview

•
$$Z \rightarrow \mu^+ \mu^-$$
 as before

•
$$2 < p_{T,D} < 12 \,\mathrm{GeV}$$

$$D^0 \to K^- \pi^+$$
 (3.89 ± 0.05%)

 $D^+ \to K^- \pi^+ \pi^+ \qquad (9.22 \pm 0.21\%)$

 $\sqrt{\mathrm{s}}=7~\mathrm{TeV}$ jhep 04 (2014) 091

22 of 24

Z plus D

 $\sqrt{s} = 7 \text{ TeV}$ JHEP 04 (2014) 091

- *Z* from PV with zero lifetime
- D from secondary vertex but associated to the same PV as the Z
 Overview
- $Z \rightarrow \mu^+ \mu^-$ as before

•
$$2 < p_{T,D} < 12 \,\text{GeV}$$

- $D^0 \to K^- \pi^+ \qquad (3.89 \pm 0.05\%)$
- $D^+ \to K^- \pi^+ \pi^+ \qquad (9.22 \pm 0.21\%)$

BACKGROUND

- Feed Down, Pile Up, Combinatorial
- Purity 95%

22 of 24

RESULTS

- $\sigma_{Z \to \mu^+ \mu^-, D^0} \mathcal{B}_{Z \to \mu^+ \mu^-} = 2.50 \pm 1.12 \pm 0.22 \, \mathrm{pb}$
- $\sigma_{Z \to \mu^+ \mu^-, D^+} \mathcal{B}_{Z \to \mu^+ \mu^-} = 0.44 \pm 0.23 \pm 0.03 \, \mathrm{pb}$
- Comparison to single parton and double parton scattering predictions
- The measured cross-section is expected to be composed of both.

DPS Formula:
$$\sigma_{DPS} = \frac{\sigma_Z \sigma_D}{\sigma_{eff}}$$

 $\sigma_{eff} = 14.5 \pm 1.7^{+1.7}_{-2.3} \text{ mb [CDF]}$

23 of 24

CONCLUSION

- Many different QCD results available relevant for
 - QCD Models
 - PDFs
- There are more already published ($Z \rightarrow ee@7$ TeV ...)
- Even more in preparation $(W^{\pm} + b/c, Z \rightarrow ee@8 \text{ TeV }...)$

CONCLUSION

- Many different QCD results available relevant for
 - QCD Models
 - PDFs
- There are more already published ($Z \rightarrow ee@7$ TeV ...)
- Even more in preparation $(W^{\pm} + b/c, Z \rightarrow ee@8$ TeV ...)

THANK YOU!