Measurements of forward neutron and neutral pion productions with the LHCf detector

Gaku Mitsuka (University of Florence, INFN Firenze, JSPS fellow)

MPI2014 3-7 Nov. 2014, Krakow

Outline

- Introduction and physics motivations
- The LHCf detector
- Selected physics results $-\pi^0$ p_T and energy spectra - Neutron energy spectra
- Upgrade of the LHCf detector towards 13 TeV
- Summary

Physics motivation (cosmic ray point of view)

The LHCf collaboration

The LHCf collaboration involves ~30 members from 10 institutes.

The LHCf detectors

• Two independent detectors (Arm1 and Arm2) are located in TAN to measure the *very forward particles*: - η>8.7 w/o crossing angle and η>8.4 with crossing angle $-p_T$ <1GeV at \sqrt{s} =7TeV.

- Sampling calorimeter + position sensitive detector.
- Charged particles are swept away due to the D1 magnet, so we can only observe neutral particles (photon and neutron).

5

• Same detectors have been used since 2009.

Position sensitive detector Arm1 : Scintillation fbers Arm2 : Silicon strip detector

Detector performances (2009-2013) $\mathbf r$ $\overline{5}$ $\overline{\mathbf{)}$ -10 -5

Update of π^0 analysis

Present LHCf results are based on the Type-I π^0 events. Improved π^0 reconstruction, Type-II, is now ready for use in analysis.

Neutral pion energy spectra (in each p_T) Preliminary

• DPMJET and PYTHIA are harder than LHCf $p_T < 1.0$ GeV, although compatible at low p_T and low E.

- QGSJET II gives good agreement at $0 < p_T < 0.2$ GeV and $0.8 < p_T < 1.0$ GeV.
- EPOS 1.99 agrees with LHCf at $0.4 < p_T < 0.8$ GeV. LHCf prefers EPOS 1.99 than EPOS LHC.

Neutral pion p_T spectra (in each energy) Preliminary

Neutral pion p_T spectra (in each y) Preliminary

Average p_T and limiting fragmentation Preliminary Preliminary

Neutron energy spectra **Preliminary** THE INCULIUII CI \ldots experimental cut, and the experimental cut, and the experimental cut of \ldots TIUV SUCUII D \mathcal{L} . g \mathcal{L} becond \mathbf{A} and \mathbf{B} are example \mathbf{A} and \mathbf{B} \mathbf{B} and \mathbf{B} \mathbf{B} and \mathbf{B} \mathbf{B} and \mathbf

Forward 130 GeV + 290 GeV Fur. Phys. J. form (2014) form (H1, Eur. Phys. J. C 74 2915 (2014))

Upgrade of the LHCf detector $\overline{5}$ $\overline{0}$ grade of the LHCf det **Counts/Bin** \blacksquare

Preliminary

10

energy[0]

11215

3528

665.8

good resolution

6000

Sigma/Mean 2.7, 2.2% ΣADC

8000

7000

200 Main features of the upgrade LHCf detector

• GSO scintillator

50

100

150

- **150** GSO hodoscope (Arm1)
- **•** Update of Si-strip sensor (Arm2
- **0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000** Bonding scheme
	- Insertion position

0
**HR
H**
₁₁
X
2 LHCf Arm1 • Update of Si-strip sensor (Arm2) e- beam **2500** Readout **2000** h_sumde_0 **Counts/Bin** \sim 36500 μ **250** $\overline{}$ Floating→GND **good linearity** $\overline{}$ **1500 200** Readout **1000** trick to avoid a saturation.**500 100** $0\overline{0}$ 20 40 60 80 100 120 140 160 180 200 **0 0 20 40 60 80 100 120 140 160 180 200 Energy [GeV] 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000** Entries **Silicon sensor** Mean 700 e- 150GeV/c **RMS** $\overline{5}$ sum $\overline{5}$ sum LHCf Arm2 Oct 2014, SPS energy and the sharp peak in each energy state of the e- beam \mathbb{R}^m beam was mono-energy beam was mono-energy beam was mono-energy \mathbb{R}^m **GOLIA** Events e- 100GeV/c Ψ . For Γ 400 300 σ/mean~2.1%

3500

200

 100

1000

2000

3000

4000

5000

Summary

- Extended p_T range in the π^0 analysis provides a more reliable benchmark for hadronic interaction MC and theoretical model (CGC?).
- Large amount of neutron yield is found in extreme forward rapidity which may be a signature of low-mass diffraction or pion exchange. Need exhaustive analysis.
- The upgraded LHCf detectors were calibrated by the SPS test beam. They show a good and expected performance.

Backup

Inclusive π^0 p_T spectra in p-p at 7TeV

- LHCf data are mostly bracketed among hadronic interaction models.
- DPMJET, SIBYLL(x2) and PYTHIA are apparently harder, while QGSJET2 is softer.

Inclusive π^0 p_T spectra in p-Pb at 5.02TeV

- The LHCf data in p-Pb (filled circles) show good agreement with DPMJET and EPOS.
- The LHCf data in p-Pb are clearly broadened than the LHCf data in p-p at 5.02TeV (shaded area). The latter is interpolated from the results at 2.76TeV and 7TeV.

Nuclear modifcation factor in p-Pb at 5.02TeV

Color Glass Condensate

