## Measurements of event shapes and particle production with the ATLAS detector

## Róbert Astaloš

(Comenius University Bratislava, Radboud University Nijmegen)
on behalf of the ATLAS Collaboration
MPI @ LHC 2014 - VI International Workshop on Multiple Partonic


Interactions at the LHC
Krakow, Poland, 3-7 November 2014
November 7, 2014

## Overview

(1) Measurement of charged-particle EVENT SHAPE variables in inclusive $\sqrt{s}=7 \mathrm{TeV} p p$ interactions with the ATLAS detector Phys. Rev. D 88, 032004 (2013) [arXiv:1207.6915]
(2) The differential production cross section of the $\phi(1020)$ meson in $\sqrt{s}=7 \mathrm{TeV}$ pp collisions measured with the ATLAS detector Eur. Phys. J. C (2014) 74:2895 [arXiv:1402.6162]
(3) Measurement of the transverse polarization of $\Lambda$ and $\bar{\Lambda}$ hyperons produced in proton-proton collisions at $\sqrt{s}=7 \mathrm{TeV}$ using the ATLAS detector
Preliminary results

## Event Shapes

= observables that describe the patterns, correlations, and origins of the energy flow in an interaction

- theoretically sound variables
- enable detailed tests of the phenomenological models of QCD in leading order MC programs $\Rightarrow$ input for tuning MC generators
- ratios of final state observables $\Rightarrow$ reduced sensitivity to theoretical and experimental uncertainties
- indirect probe of multi-jet topologies
- vanish in the limit of a pure $2 \rightarrow 2$ process
- increase to a maximum for uniformly distributed energy within event
transverse sphericity
complement to
transverse thrust:
$\boldsymbol{\tau}_{\perp}=1-T_{\perp}=1-\max _{\hat{\boldsymbol{n}}_{\perp}} \frac{\sum_{i}}{\sum_{i} p_{\mathrm{T} i}}$
transverse thrust minor:

$$
T_{\mathrm{M}}=\frac{\sum_{i}\left|\boldsymbol{p}_{\mathrm{T} i} \cdot \hat{\boldsymbol{n}}_{m}\right|}{\sum_{i} \boldsymbol{p}_{\mathrm{T} i}}
$$

$$
\hat{\boldsymbol{n}}_{m}=\hat{\boldsymbol{n}}_{\perp} \times \hat{\boldsymbol{z}}
$$

## Event and Track Selection

the data collected in April 2010 with a minimal prescale factor for the minimum-bias trigger (peak luminosity $\approx 1.9 \times 10^{27} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ )
events rejected if they contain any other vertex with $\geq 4$ tracks apart from the primary interaction vertex of the event events required to contain at least 6 tracks fulfilling the criteria:

- $p_{\mathrm{T}}>0.5 \mathrm{GeV} ;|\eta|<2.5$
- a minimum of one pixel and 6 SCT hits;
- a hit in the innermost pixel layer, if the corresponding pixel module was active;
- transverse and longitudinal impact parameters wrt the primary vertex, $\left|\mathbf{d}_{\mathbf{0}}\right|<\mathbf{1 . 5} \mathbf{~ m m}$ and $\left|\mathbf{z}_{\mathbf{0}}\right| \sin \theta<\mathbf{1 . 5} \mathbf{~ m m}$;
- a track-fit probability $\chi^{2}>0.01$ for tracks with $p_{\mathrm{T}}>10 \mathrm{GeV}$ in order to remove mis-measured tracks.


## Transverse Sphericity Distributions


lower $p_{\mathrm{T}}^{\text {lead }}$ ranges: spherical events prevalence $\tau_{\perp}$ and $T_{\mathrm{M}}$ are less sensitive to $p_{\mathrm{T}}^{\text {lead }}$ increase! all models tend to better reproduce data selected with higher $p_{\mathrm{T}}^{\text {lead }}$ ranges PYTHIA 6 tune Z1 tuned to UE at LHC agrees best

## Average Values of the $\tau_{\perp}^{\mathrm{ch}}, T_{\mathrm{M}}^{\mathrm{ch}}$ and $S_{\perp}^{\text {ch }}$ Distributions

| $\boldsymbol{p}_{\mathrm{T}}^{\text {lead }}$ range | $\boldsymbol{\tau}_{\perp}^{\text {ch }}$ | $\boldsymbol{T}_{\mathrm{M}}^{\text {ch }}$ | $\boldsymbol{S}_{\perp}^{\text {ch }}$ |
| :--- | :--- | :--- | :--- |
| $0.5 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}^{\text {lead }} \leq 2.5 \mathrm{GeV}$ | $0.227 \pm 0.002$ | $0.508 \pm 0.002$ | $0.618 \pm 0.005$ |
| $2.5 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}^{\text {lead }} \leq 5.0 \mathrm{GeV}$ | $0.240 \pm 0.006$ | $0.514 \pm 0.005$ | $0.579 \pm 0.013$ |
| $5.0 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}^{\text {lead }} \leq 7.5 \mathrm{GeV}$ | $0.227 \pm 0.007$ | $0.490 \pm 0.006$ | $0.449 \pm 0.019$ |
| $7.5 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}^{\text {lead }} \leq 10 \mathrm{GeV}$ | $0.210 \pm 0.010$ | $0.459 \pm 0.007$ | $0.337 \pm 0.017$ |
| $p_{\mathrm{T}}^{\text {lead }} \geq 10 \mathrm{GeV}$ | $0.185 \pm 0.011$ | $0.415 \pm 0.010$ | $0.230 \pm 0.024$ |

- mean values of $\tau_{\perp}^{\mathrm{ch}}$ and $T_{\mathrm{M}}^{\mathrm{ch}}$ initially rise with increasing $p_{\mathrm{T}}^{\text {lead }}$ with their maximum value in the range $2.5 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}^{\text {lead }} \leq 5.0 \mathrm{GeV}$, before decreasing
- similar trend observed by the ALICE Collaboration, transverse sphericity distribution, charged particles with $|\eta|<0.8$ in inelastic 7 TeV pp collisions (Eur. Phys. J. C72 (2012) 2124 [arXiv:1205.3963])


## Mean Values of $\tau_{\perp}^{\mathrm{ch}}, T_{\mathrm{M}}^{\mathrm{ch}}, S_{\perp}^{\mathrm{ch}}$ as Functions of $N_{c h}, \sum p_{\mathrm{T}}$







all observables increase with $N_{c h}$; increase is less marked at values of $N_{c h}>30$ similar trend for $\sum p_{\mathrm{T}}$; for $\sum p_{\mathrm{T}}>100 \mathrm{GeV}$ decrease again $\Rightarrow$ events are more dijet-like MC models predict fewer high-sphericity events than seen in the data (similar by ALICE)
$N_{c h}$ behavior predicted by MC well; decrease in $\sum p_{\mathrm{T}}$ happens before the data

## Overview

## (1) Measurement of charged-particle EVENT SHAPE variables in inclusive $\sqrt{s}=7 \mathrm{TeV} p p$ interactions with the ATLAS detector Phys. Rev. D 88, 032004 (2013) [arXiv:1207.6915]

(2) The differential production cross section of the $\phi(1020)$ meson in $\sqrt{s}=7 \mathrm{TeV}$ pp collisions measured with the ATLAS detector Eur. Phys. J. C (2014) 74:2895 [arXiv:1402.6162]
(3) Measurement of the transverse polarization of $\Lambda$ and $\bar{\Lambda}$ hyperons produced in proton-proton collisions at $\sqrt{s}=7 \mathrm{TeV}$ using the ATLAS detector
Preliminary results

## $\phi \rightarrow K^{+} K^{-}$

data from April 2010, integrated luminosity of $383 \mu \mathrm{~b}^{-1}$ probe strangeness production at a soft scale $Q \sim 1 \mathrm{GeV}$, sensitive to $s$-quark and low- $x$ gluon densities $\rightarrow$ sensitive to proton parton distribution function trigger selection: one MBTS hit above treshold from either side event selection: primary vertex, at least two tracks with $p_{\mathrm{T}}>150 \mathrm{MeV}$ track selection: more than one pixel cluster and more than one SCT hit $p_{\mathrm{T}}>230 \mathrm{MeV}$ (tracking efficiency for kaon tracks) $p<800 \mathrm{MeV}$ (particle identification); $|\eta|<2.0$ only tracks from PV used, fitted with a kaon-mass assumption

expected energy loss for $p=500 \mathrm{MeV}$ : 2.4 (kaon); 1.2 (pion) $\mathrm{MeV} \mathrm{g}^{-1} \mathrm{~cm}^{2}$ required probability:
$P_{\text {pion }}<0.1 \& P_{\text {kaon }}>0.84$
$\phi(1020)$ candidates: oppositely charged track pairs, combine to invariant mass: $1000<m\left(K^{+} K^{-}\right)<1060 \mathrm{MeV}$

## Signal extraction

weight assigned to each $\phi(1020)$ candidate to correct for losses : trigger, vertex and track reco. eff., kaon ID eff., tracks out of range


signal shape $\rightarrow$ relativistic Breit-Wigner formula $\rightarrow$ convoluted with a Gaussian resolution function
signal added to an empirical background description $\rightarrow$ parameters initial values $\rightarrow$ fit to a sample with two kaons of the same charge

## Results

$$
\begin{aligned}
\sigma_{\phi} \times B R(\phi \rightarrow & \left.K^{+} K^{-}\right)=570 \pm 8(\text { stat }) \pm 68 \text { (syst) } \pm 20 \text { (lumi) } \mu \mathrm{b} \\
& \left(500<p_{\mathrm{T}, \phi}<1200 \mathrm{MeV},\left|y_{\phi}\right|<0.8\right)
\end{aligned}
$$



$\sigma_{\phi}$ increases with $p_{\mathrm{T}, \phi}$ in $500-700 \mathrm{MeV}$ (due to $p_{\mathrm{T}, K}>230 \mathrm{MeV}$ ) decreases with $p_{\mathrm{T}, \phi}$ for $p_{\mathrm{T}, \phi}>850 \mathrm{MeV}$ decreases with $\left|y_{\phi}\right|$ for $\left|y_{\phi}\right| \geq 0.5$ (due to $p_{K}<800 \mathrm{MeV}$ ) is stable with $\left|y_{\phi}\right|$ for $\left|y_{\phi}\right| \leq 0.5$
best description by PYTHIA 6 DW and EPOS-LHC tune

## Comparison to ALICE

$\sigma_{\phi}$ extrapolated to a cross section in the region $500<p_{\mathrm{T}, \phi}<1200 \mathrm{MeV}$ and central rapidity region $\left|y_{\phi}\right|<0.5$ using MC particle level information

PYTHIA 6 used $\rightarrow 10 \%$ variation between different generators included as additional systematic uncertainty


- in agreement within $10 \%$ in the first two bins
- in agreement within 3\% in the other bins
- well within the systematic uncertainties


## Overview

(1) Measurement of charged-particle EVENT SHAPE variables in inclusive $\sqrt{s}=7 \mathrm{TeV}$ pp interactions with the ATLAS detector Phys. Rev. D 88, 032004 (2013) [arXiv:1207.6915]
(2) The differential production cross section of the $\phi(1020)$ meson in $\sqrt{s}=7 \mathrm{TeV}$ pp collisions measured with the ATLAS detector Eur. Phys. J. C (2014) 74:2895 [arXiv:1402.6162]
(3) Measurement of the transverse polarization of $\Lambda$ and $\bar{\Lambda}$ hyperons produced in proton-proton collisions at $\sqrt{s}=7 \mathrm{TeV}$ using the ATLAS detector
Preliminary results

## Transverse polarization of $\Lambda$ and $\bar{\wedge}$ hyperons


$P$ measured as a function of $p_{T}$ and Feynman $x$-variable $x_{\mathrm{F}}$ :

$$
x_{\mathrm{F}}=p_{\mathrm{z}} / p_{\text {beam }}
$$

$p_{\mathrm{z}} \equiv p_{\mathrm{z}}(\Lambda)$
$p_{\text {beam }}=3.5 \mathrm{TeV}$
in this analysis $x_{\mathrm{F}}$ up to $\sim 0.01$ (good statistics only up to 0.002)
polarization measured in direction normal to the production plane:

$$
\vec{n}=\hat{p}_{\text {beam }} \times \vec{p}
$$

$\hat{p}_{\text {beam }}$ - aligned with proton beam $\vec{p}$ - momentum of $\Lambda$ hyperon
decays $\Lambda \rightarrow p \pi^{-}$and $\bar{\Lambda} \rightarrow \bar{p} \pi^{+}$
probability distribution of $\theta^{*}$ angle:

$$
g(t ; P)=\frac{1}{2}(1+\alpha P t)
$$

$t=\cos \theta^{*}$
$P$ - polarization in $\vec{n}$ direction
$\alpha=0.642 \pm 0.013$
(World average value)

## Selection and measurement strategy

data from the beginning of 2010 , integrated luminosity of $760 \mu \mathrm{~b}^{-1}$ trigger selection: at least one hit in either of the two MBTS sides event selected: at least one reconstructed collision vertex
decay vertex required to lie within the inner volume of the last layer of the SCT detector - transverse decay distance restricted to 45 cm
long-lived 2 -prong decay candidates, invariant mass calculated using hypotheses $\Lambda \rightarrow p \pi^{-}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}, K_{\mathrm{S}}^{0} \rightarrow \pi^{+} \pi^{-}, \gamma \rightarrow e^{+} e^{-}$

Polarization measured by analyzing the angular distribution of $\Lambda$ and $\bar{\Lambda}$ decay products modified by detector efficiency and resolution effects:

$$
g_{\operatorname{det}}\left(t^{\prime} ; P\right) \propto \frac{1}{2}[(1+\alpha P t) \varepsilon(t)] \otimes R\left(t^{\prime}, t\right)
$$

$t^{\prime} \equiv \cos \theta_{\mathrm{det}}^{*}$ - measured decay angle; $\varepsilon(t)$ - reconstruction efficiency $R\left(t^{\prime}, t\right)$ - resolution function convoled with the decay angle distribution

## Measurement strategy

Method of moments: for any $P$, the first moment expressed as a linear combination of the first moments of distributions with $P=0$ and $P=1$

$$
E(P)=\int_{-1}^{1} \mathrm{~d} t^{\prime} t^{\prime} g_{\operatorname{det}}\left(t^{\prime} ; P\right)=E(0)+[E(1)-E(0)] P
$$

$E(0)$ and $E(1)$ estimated using MC (mean for samples with $P=0(1)$ )


correction for background contrib.
$\rightarrow$ the first moments calculated separately in the signal and sideband regions
polarization of background independent of $m_{p \pi}$ (cross-checked with MC) $\rightarrow$ the value measured in the sidebands used for the signal region

## Results

$$
\begin{array}{ll}
P_{\Lambda}=-0.010 \pm 0.005 \text { (stat) } \pm 0.004 \text { (syst) } & 0.8<p_{\mathrm{T}}<15 \mathrm{GeV} ;|\eta|<2.5 \\
P_{\bar{\Lambda}}=0.002 \pm 0.006 \text { (stat) } \pm 0.004 \text { (syst) } & 5 \times 10^{-5}<x_{\mathrm{F}}<0.01
\end{array}
$$




- polarizations in $p_{\mathrm{T}}$ and $x_{\mathrm{F}}$ bins: less than $2 \%$ (consistent with zero within estimated uncertainty)
- polarization of $\bar{\Lambda}$ was measured consistent with zero by all the previous experiments


## Polarization of $\wedge$

Q

comparison is non-trivial, each measurement made at different $\sqrt{s}$ and covers different phase space

- some energy dependence could be introduced $\rightarrow$ about $50 \%$ of $\Lambda$ in ATLAS are produced in decays - Pythia estimate ( $40 \%$ in NA48)
- assume: polarization of the original baryons diluted in the decay
$\rightarrow$ measured polarization expected to be consistent with or smaller than the extrapolation $\quad \checkmark$ satisfied in this measurement


## Summary

- less spherical with $p_{\mathrm{T}}^{\text {lead }}$ increase, acc. to all three event shape variables more spherical with increasing multiplicity most accurate description: PYTHIA6 MC generator with the Z 1 tune
- $\sigma_{\phi} \times B R\left(\phi \rightarrow K^{+} K^{-}\right)=570 \pm 8$ (stat) $\pm 68$ (syst) $\pm 20$ (lumi) $\mu \mathrm{b}$ best description of $\sigma_{\phi}\left(p_{\mathrm{T}}\right)$ and $\sigma_{\phi}\left(\left|y_{\phi}\right|\right)$ by PYTHIA 6 DW and EPOS-LHC
- $P_{\wedge}=-0.010 \pm 0.005$ (stat) $\pm 0.004$ (syst)
$P_{\bar{\Lambda}}=0.002 \pm 0.006$ (stat) $\pm 0.004$ (syst)
$P$ in $p_{\mathrm{T}}$ and $x_{\mathrm{F}}$ bins: consistent with zero within estimated uncertainty $P_{\Lambda}\left(x_{\mathrm{F}}\right)$ and $P_{\bar{\Lambda}}\left(x_{\mathrm{F}}\right)$ match the behavior expected from older experiments


## Backup slides

## Atlas Detector


the ATLAS detector - almost full solid angle around the collision point coverage electromagnetic \& hadron calorimeter, muon spectrometer
tracking detectors - azimuthal angle $\phi$ : full coverage, pseudorapidity coverage: $\eta<2.5$

- pixel detector (pixel); semiconductor tracker (SCT)
- for $|\eta|<2.0$ transition radiation tracker (TRT)

Minimum Bias Trigger Scintillator (MBTS) - mounted at each end of the tracking detector at $z= \pm 3.56 \mathrm{~m}$ segmented into 8 sectors in azimuth and two concentric rings in pseudorapidity $2.09<|\eta|<2.82$ and $2.82<|\eta|<3.84$

## Transverse Thrust

$$
T_{\perp}=\max _{\hat{\boldsymbol{n}}_{\perp}} \frac{\sum_{i}\left|\boldsymbol{p}_{\mathrm{T} i} \cdot \hat{\boldsymbol{n}}_{\perp}\right|}{\sum_{i} p_{\mathrm{T} i}} \quad \boldsymbol{\tau}_{\perp}=1-T_{\perp}
$$

- the sum over the $\boldsymbol{p}_{\mathrm{T} i}$ of all charged particles in the event
- $\hat{\boldsymbol{n}}_{\perp}$ - the unit vector of the thrust axis maximizing the ratio
- $T_{\perp}=1$ - for a perfectly balanced, pencil-like, dijet topology
- $T_{\perp}=2 / \pi$ - for a circularly symmetric distribution of particles in the transverse plane
$\tau_{\perp}$ - complement to $T_{\perp}$ - matches the behavior of many event shape variables:
- vanishes in a balanced dijet topology
- large value of $\tau_{\perp}$ - a departure from a two-body system


## Transverse Thrust Minor

Event Plane $=$ defined by the thrust axis $\hat{\boldsymbol{n}}_{\perp}$ and beam axis $\hat{\boldsymbol{z}}$

$$
T_{\mathrm{M}}=\frac{\sum_{i}\left|\boldsymbol{p}_{\mathrm{T} i} \cdot \hat{\boldsymbol{n}}_{m}\right|}{\sum_{i} \boldsymbol{p}_{\mathrm{T} i}}, \quad \hat{\boldsymbol{n}}_{m}=\hat{\boldsymbol{n}}_{\perp} \times \hat{\boldsymbol{z}}
$$

The transverse thrust minor $T_{\mathrm{M}}$ quantifies the sum of all tranverse momenta out of the event plain

- $T_{\mathrm{M}}=0$ - for a perfectly balanced, pencil-like, dijet topology
- $T_{M}=2 / \pi$ - for an isotropic event (circularly symmetric distribution of particles in the transverse plane)


## Sphericity

full momentum tensor of the event:

$$
M_{\alpha \beta}=\sum_{i} p_{\alpha}^{i} \boldsymbol{p}_{\beta}^{i} \quad \alpha, \beta=x, y, z
$$

- sum runs over all charged particles in the event
- eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are normalized $\sum_{i} \lambda_{i}=1$ and ordered that $\lambda_{1}>\lambda_{2}>\lambda_{3}$

Sphericity S measures the summed $p_{T}^{2}$ with respect to the event axis (the line passing through the interaction point and oriented along the eigenvector associated with the largest eigenvalue, $\lambda_{1}$ )

$$
S=\frac{3}{2}\left(\lambda_{2}+\lambda_{3}\right)
$$

- $S=0$ - for a balanced dijet event
- $S=1$ - for an isotropic event


## Transverse Sphericity

the transverse sphericity $\mathbf{S}_{\perp}$ is defined in terms of the transverse components only:

$$
S_{\perp}=\frac{2 \lambda_{2}^{x y}}{\lambda_{1}^{x y}+\lambda_{2}^{x y}}
$$

where $\lambda_{1}^{x y}>\lambda_{2}^{x y}$ are two eigenvalues of $S^{x y}$ :

$$
S^{x y}=\sum_{i} \frac{1}{\left|p_{T, i}\right|^{2}}\left(\begin{array}{cc}
p_{x i}^{2} & p_{x i} p_{y i} \\
p_{y i} p_{x i} & p_{y i}^{2}
\end{array}\right)
$$

- allowed range: $0 \leq S_{\perp}<1$


## Monte Carlo Models in Event Shapes Analysis

| Generator | Version | Tune | PDF | Focus | Data | From |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PYTHIA 6 | 6.425 | AMBT2B | CTEQ6L1 | MB | LHC | ATLAS |
| PYTHIA 6 | 6.421 | DW | CTEQ5L | UE | Tevatron | CDF |
| PYTHIA 6 | 6.425 | Z1 | CTEQ5L | UE | LHC | CMS |
| PYTHIA 8 | 8.157 | A2 | MSTW2008LO | MB | LHC | ATLAS |
| HERWIG ++ | 2.5 .1 | UE7-2 | MRST LO** | UE | LHC | Authors |
| PYTHIA 6 | 6.425 | AMBT1 | MRST LO** | MB | Early LHC | ATLAS |
| HERWIG ++ | 2.5 .0 | Default | MRST LO** | UE | LHC | Authors |

- predictions from 5 different MC models (PYTHIA 6 AMBT2B, PYTHIA 6 DW, PYTHIA 6 Z1, PYTHIA 8 A2, and HERWIG ++ UE7-2) are compared to observed data
- PYTHIA 6 AMBT1 - reference model for the analysis - used to correct the data for detector effects
- HERWIG ++ 2.5.0 - used for systematic studies


## Measured Distributions

I. Normalized distributions:
$\left(1 / N_{e v}\right) d N_{e v} / d \tau_{\perp}^{c h}$
$\left(1 / N_{e v}\right) d N_{e v} / d T_{M}^{c h}$
$\left(1 / N_{e v}\right) d N_{e v} / d S_{\perp}^{c h}$
${ }^{c h}$ in the event shape observables $\tau_{\perp}^{\mathrm{ch}}, T_{\mathrm{M}}^{\mathrm{ch}}, S_{\perp}^{\text {ch }}$ indicating charged particles
studied separately for the following $p_{\mathrm{T}}^{\text {lead }}$ regions:

- $0.5 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}^{\text {lead }}<2.5 \mathrm{GeV}$;
$2.5 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}^{\text {lead }}<5.0 \mathrm{GeV}$;
- $5.0 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}^{\text {lead }}<7.5 \mathrm{GeV} ; \quad 7.5 \mathrm{GeV}<\mathrm{p}_{\mathrm{T}}^{\text {lead }}<10.0 \mathrm{GeV}$;
- $p_{\mathrm{T}}^{\text {lead }}>10.0 \mathrm{GeV}$
$p_{\mathrm{T}}^{\text {lead }}$ - transverse momentum of the highest $p_{\mathrm{T}}$ (leading) charged particle
II. Average values: $\left\langle\tau_{\perp}^{c h}\right\rangle,\left\langle T_{\mathrm{M}}^{c h}\right\rangle,\left\langle S_{\perp}^{c h}\right\rangle$ as functions of $N_{c h}, \sum p_{\mathrm{T}}$
- $N_{e v}$ - number of events with six or more charged particles within the selected kinematic range
- $N_{c h}$ - number of charged particles in an event
- $\sum p_{\mathrm{T}}$ - scalar sum of transverse momenta of charged particles in the event


## Complement of the Transverse Thrust Distributions






lower $p_{\mathrm{T}}^{\text {lead }}$ ranges: spherical events prevalence
starting with $p_{\mathrm{T}}^{\text {lead }}>7.5 \mathrm{GeV}$ : shift to less spherical events \& distribution broadening
all models tend to better reproduce data selected with higher $p_{\mathrm{T}}^{\text {lead }}$ ranges
PYTHIA 6 tune Z 1 tuned to UE at LHC agrees best; PYTHIA 6 DW is furthest from data AMBT2B based on MB LHC data shows better agreement in the lowest $p_{\mathrm{T}}^{\text {lead }}$ ranges compared to AMBT2B, PYTHIA 8 and HERWIG++ agree better in intermediate $p_{\mathrm{T}}^{\text {lead }}$

## Transverse Thrust Minor Distributions





lower $p_{\mathrm{T}}^{\text {lead }}$ ranges: spherical events prevalence
starting with $p_{\mathrm{T}}^{\text {lead }}>7.5 \mathrm{GeV}$ : shift to less spherical events \& distribution broadening
all models tend to better reproduce data selected with higher $p_{\mathrm{T}}^{\text {lead }}$ ranges
PYTHIA 6 tune Z 1 tuned to UE at LHC agrees best; PYTHIA 6 DW is furthest from data AMBT2B based on MB LHC data shows better agreement in the lowest $p_{\mathrm{T}}^{\text {lead }}$ ranges compared to AMBT2B, PYTHIA 8 and HERWIG++ agree better in intermediate $p_{\mathrm{T}}^{\text {lead }}$

