Measurements of event shapes and particle production with the ATLAS detector

Róbert Astaloš

(Comenius University Bratislava, Radboud University Nijmegen)

on behalf of the ATLAS Collaboration

MPI @ LHC 2014 – VI International Workshop on Multiple Partonic Interactions at the LHC Krakow, Poland, 3-7 November 2014

November 7, 2014

Overview

- Measurement of charged-particle EVENT SHAPE variables in inclusive $\sqrt{s}=7~{\rm TeV}~pp$ interactions with the ATLAS detector Phys. Rev. D 88, 032004 (2013) [arXiv:1207.6915]
- The differential production cross section of the ϕ (1020) meson in $\sqrt{s}=7~{\rm TeV}$ pp collisions measured with the ATLAS detector Eur. Phys. J. C (2014) 74:2895 [arXiv:1402.6162]
- 3 Measurement of the transverse polarization of Λ and $\bar{\Lambda}$ hyperons produced in proton-proton collisions at $\sqrt{s}=7~\rm TeV$ using the ATLAS detector

Preliminary results

Event Shapes

- = observables that describe the patterns, correlations, and origins of the energy flow in an interaction
 - theoretically sound variables
 - enable detailed tests of the phenomenological models of QCD in leading order MC programs ⇒ input for tuning MC generators
 - ratios of final state observables ⇒ reduced sensitivity to theoretical and experimental uncertainties
 - indirect probe of multi-jet topologies
 - vanish in the limit of a pure 2 → 2 process
 - increase to a maximum for uniformly distributed energy within event

transverse sphericity

complement to

transverse thrust:
$$\boldsymbol{\tau}_{\perp} = \mathbf{1} - \boldsymbol{T}_{\perp} = \mathbf{1} - \max_{\hat{\boldsymbol{n}}_{\perp}} \frac{\sum\limits_{i} |\boldsymbol{p}_{\mathrm{T}i} \cdot \hat{\boldsymbol{n}}_{\perp}|}{\sum p_{\mathrm{T}i}}$$

$$rac{\sum\limits_{i}|oldsymbol{
ho}_{\mathrm{T}i}\cdot\hat{oldsymbol{n}}_{\perp}|}{\sum p_{\mathrm{T}i}}$$

transverse thrust minor:

$$\mathcal{T}_{\mathrm{M}} = rac{\sum\limits_{i} |oldsymbol{
ho}_{\mathrm{T}i} \cdot \hat{oldsymbol{n}}_{m}|}{\sum\limits_{i} oldsymbol{
ho}_{\mathrm{T}i}},$$

$$\hat{m{n}}_m = \hat{m{n}}_{\perp} imes m{n}$$

Event and Track Selection

the data collected in April 2010 with a minimal prescale factor for the minimum-bias trigger (peak luminosity $\approx~1.9\times10^{27}~cm^{-2}s^{-1})$

events rejected if they contain any other vertex with \geq 4 tracks apart from the primary interaction vertex of the event

events required to contain at least 6 tracks fulfilling the criteria:

- $p_T > 0.5 \text{ GeV}$; $|\eta| < 2.5$
- a minimum of one pixel and 6 SCT hits;
- a hit in the innermost pixel layer, if the corresponding pixel module was active;
- transverse and longitudinal impact parameters wrt the primary vertex, $|\mathbf{d_0}| < 1.5$ mm and $|\mathbf{z_0}| \sin \theta < 1.5$ mm;
- a track-fit probability $\chi^2 > 0.01$ for tracks with $p_T > 10$ GeV in order to remove mis-measured tracks.

Transverse Sphericity Distributions

PYTHIA 6 tune Z1 tuned to UE at LHC agrees best

Average Values of the $au_{\perp}^{ m ch}$, $T_{ m M}^{ m ch}$ and $S_{\perp}^{ m ch}$ Distributions

p _T lead range	$ au_{\perp}^{ m ch}$	T _M ^{ch}	Sch ⊥
$0.5 \text{ GeV} < p_T^{\text{lead}} \le 2.5 \text{ GeV}$	0.227 ± 0.002	0.508 ± 0.002	0.618 ± 0.005
$2.5 \text{ GeV} < p_{T}^{\text{lead}} \le 5.0 \text{ GeV}$	$\textbf{0.240} \pm \textbf{0.006}$	$\textbf{0.514} \pm \textbf{0.005}$	$\textbf{0.579} \pm \textbf{0.013}$
$5.0 \text{ GeV} < p_T^{\text{lead}} \le 7.5 \text{ GeV}$	0.227 ± 0.007	0.490 ± 0.006	$\textbf{0.449} \pm \textbf{0.019}$
$7.5 \text{ GeV} < p_T^{\text{lead}} \le 10 \text{ GeV}$	$\textbf{0.210} \pm \textbf{0.010}$	0.459 ± 0.007	$\textbf{0.337} \pm \textbf{0.017}$
$p_{\rm T}^{\rm lead} \geq 10~{ m GeV}$	0.185 ± 0.011	$\textbf{0.415} \pm \textbf{0.010}$	$\textbf{0.230} \pm \textbf{0.024}$

- mean values of $au_{\perp}^{\rm ch}$ and $T_{\rm M}^{\rm ch}$ initially rise with increasing $p_{\rm T}^{\rm lead}$ with their maximum value in the range 2.5 GeV $< p_{\rm T}^{\rm lead} \le 5.0$ GeV, before decreasing
- similar trend observed by the ALICE Collaboration, transverse sphericity distribution, charged particles with $|\eta|<$ 0.8 in inelastic 7 TeV pp collisions (Eur. Phys. J. C72 (2012) 2124 [arXiv:1205.3963])

Mean Values of $\tau_{\perp}^{\rm ch}$, $T_{\rm M}^{\rm ch}$, $S_{\perp}^{\rm ch}$ as Functions of N_{ch} , $\sum p_{\rm T}$

all observables increase with N_{ch} ; increase is less marked at values of $N_{ch} > 30$ similar trend for $\sum p_{\rm T}$; for $\sum p_{\rm T} > 100$ GeV decrease again \Rightarrow events are more dijet-like MC models predict fewer high-sphericity events than seen in the data (similar by ALICE) N_{ch} behavior predicted by MC well; decrease in $\sum p_{\rm T}$ happens before the data

Overview

- Measurement of charged-particle EVENT SHAPE variables in inclusive $\sqrt{s}=7~{\rm TeV}~pp$ interactions with the ATLAS detector Phys. Rev. D 88, 032004 (2013) [arXiv:1207.6915]
- The differential production cross section of the $\phi(1020)$ meson in $\sqrt{s}=7~{\rm TeV}$ pp collisions measured with the ATLAS detector Eur. Phys. J. C (2014) 74:2895 [arXiv:1402.6162]
- Measurement of the transverse polarization of Λ and $\bar{\Lambda}$ hyperons produced in proton-proton collisions at $\sqrt{s}=7~{\rm TeV}$ using the ATLAS detector

Preliminary results

$\phi ightarrow {\it K}^+{\it K}^-$

data from April 2010, integrated luminosity of 383 μ b⁻¹ probe strangeness production at a soft scale $Q \sim$ 1 GeV, sensitive to s-quark and low-x gluon densities \rightarrow sensitive to proton parton distribution function trigger selection: one MBTS hit above treshold from either side event selection: primary vertex, at least two tracks with $p_T >$ 150 MeV

track selection: more than one pixel cluster and more than one SCT hit $p_T > 230 \text{ MeV}$ (tracking efficiency for kaon tracks)

p < 800 MeV (particle identification); $|\eta|$ < 2.0

only tracks from PV used, fitted with a kaon-mass assumption

expected energy loss for p = 500 MeV: 2.4 (kaon); 1.2 (pion) MeV g⁻¹cm² required probability:

$$P_{\text{pion}} < 0.1 \& P_{\text{kaon}} > 0.84$$

 ϕ (1020) candidates: oppositely charged track pairs, combine to invariant mass: $1000 < m(K^+K^-) < 1060 \text{ MeV}$

Signal extraction

weight assigned to each $\phi(1020)$ candidate to correct for losses : trigger, vertex and track reco. eff., kaon ID eff., tracks out of range

signal shape → relativistic Breit-Wigner formula → convoluted with a Gaussian resolution function

signal added to an empirical background description \rightarrow parameters initial values \rightarrow fit to a sample with two kaons of the same charge

Results

$$\sigma_{\phi} imes BR(\phi o K^+K^-) = 570 \pm 8 ext{ (stat)} \pm 68 ext{ (syst)} \pm 20 ext{ (lumi)} \ \mu b \ (500 < p_{\mathrm{T},\phi} < 1200 ext{ MeV}, \ |y_{\phi}| < 0.8)$$

 σ_{ϕ} increases with $p_{\mathrm{T},\phi}$ in 500 – 700 MeV (due to $p_{\mathrm{T},K}$ > 230 MeV) decreases with $p_{\mathrm{T},\phi}$ for $p_{\mathrm{T},\phi}$ > 850 MeV decreases with $|y_{\phi}|$ for $|y_{\phi}| \geq 0.5$ (due to p_{K} < 800 MeV) is stable with $|y_{\phi}|$ for $|y_{\phi}| \leq 0.5$

best description by PYTHIA 6 DW and EPOS-LHC tune

Comparison to ALICE

 σ_ϕ extrapolated to a cross section in the region 500 $< p_{\Gamma,\phi} <$ 1200 MeV and central rapidity region $|y_\phi| <$ 0.5 using MC particle level information

PYTHIA 6 used \rightarrow 10% variation between different generators included as additional systematic uncertainty

- in agreement within 10% in the first two bins
- in agreement within 3% in the other bins
- well within the systematic uncertainties

Overview

- Measurement of charged-particle EVENT SHAPE variables in inclusive $\sqrt{s}=7~{\rm TeV}~pp$ interactions with the ATLAS detector Phys. Rev. D 88, 032004 (2013) [arXiv:1207.6915]
- The differential production cross section of the ϕ (1020) meson in $\sqrt{s}=7~{\rm TeV}$ pp collisions measured with the ATLAS detector Eur. Phys. J. C (2014) 74:2895 [arXiv:1402.6162]
- Measurement of the transverse polarization of Λ and $\bar{\Lambda}$ hyperons produced in proton-proton collisions at $\sqrt{s}=7~{\rm TeV}$ using the ATLAS detector

Preliminary results

Transverse polarization of Λ and $\bar{\Lambda}$ hyperons

P measured as a function of p_T and Feynman *x*-variable x_F :

$$x_{
m F} =
ho_{
m z}/
ho_{
m beam}$$
 $ho_{
m z} \equiv
ho_{
m z}(\Lambda)$

 $p_{\text{beam}} = 3.5 \text{ TeV}$

in this analysis x_F up to ~ 0.01 (good statistics only up to 0.002)

polarization measured in direction normal to the production plane:

$$\vec{n} = \hat{p}_{beam} \times \vec{p}$$

 \hat{p}_{beam} - aligned with proton beam \vec{p} - momentum of Λ hyperon

decays $\Lambda o {m p} \pi^-$ and $ar{\Lambda} o ar{{m p}} \pi^+$

probability distribution of θ^* angle:

$$g(t; P) = \frac{1}{2}(1 + \alpha Pt)$$

 $t = \cos \theta^*$

P - polarization in \vec{n} direction

$$\alpha = \textbf{0.642} \pm \textbf{0.013}$$

(World average value)

Selection and measurement strategy

data from the beginning of 2010, integrated luminosity of 760 μb^{-1}

trigger selection: at least one hit in either of the two MBTS sides event selected: at least one reconstructed collision vertex

decay vertex required to lie within the inner volume of the last layer of the SCT detector - transverse decay distance restricted to 45 cm

long-lived 2-prong decay candidates, invariant mass calculated using hypotheses $\Lambda\to p\pi^-,\,\bar\Lambda\to\bar p\pi^+,\,K^0_{\rm S}\to\pi^+\pi^-,\,\gamma\to e^+e^-$

Polarization measured by analyzing the angular distribution of Λ and $\bar{\Lambda}$ decay products modified by detector efficiency and resolution effects:

$$g_{\text{det}}(t'; P) \propto \frac{1}{2} \left[(1 + \alpha Pt) \, \varepsilon(t) \right] \otimes R(t', t)$$

 $t' \equiv \cos \theta_{\rm det}^*$ - measured decay angle; $\varepsilon(t)$ - reconstruction efficiency R(t',t) - resolution function convoled with the decay angle distribution

Measurement strategy

Method of moments: for any P, the first moment expressed as a linear combination of the first moments of distributions with P=0 and P=1

$$E(P) = \int_{-1}^{1} dt' \ t' g_{\text{det}}(t'; P) = E(0) + [E(1) - E(0)]P$$

E(0) and E(1) estimated using MC (mean for samples with P=0(1))

correction for background contrib.

→ the first moments calculated separately in the signal and sideband regions

polarization of background independent of $m_{p\pi}$ (cross-checked with MC)

→ the value measured in the sidebands used for the signal region

Results

$$P_{\Lambda} = -0.010\pm0.005(\text{stat})\pm0.004(\text{syst})$$

 $P_{\bar{\Lambda}} = 0.002\pm0.006(\text{stat})\pm0.004(\text{syst})$

$$0.8 < p_{\rm T} < 15 \ {\rm GeV}; \ |\eta| < 2.5 \ 5 \times 10^{-5} < x_{\rm F} < 0.01$$

- polarizations in p_T and x_F bins: less than 2% (consistent with zero within estimated uncertainty)
- polarization of $\bar{\Lambda}$ was measured consistent with zero by all the previous experiments

Polarization of A

comparison is non-trivial, each measurement made at different \sqrt{s} and covers different phase space

- some energy dependence could be introduced → about 50% of Λ in ATLAS are produced in decays – Pythia estimate (40% in NA48)
- assume: polarization of the original baryons diluted in the decay
 - → measured polarization expected to be consistent with or smaller than the extrapolation ✓ satisfied in this measurement

Summary

- less spherical with $p_{\rm T}^{\rm lead}$ increase, acc. to all three event shape variables more spherical with increasing multiplicity most accurate description: PYTHIA6 MC generator with the Z1 tune
- $\sigma_{\phi} \times BR(\phi \to K^+K^-) = 570 \pm 8 \text{ (stat)} \pm 68 \text{ (syst)} \pm 20 \text{ (lumi) } \mu\text{b}$ best description of $\sigma_{\phi}(p_{\text{T}})$ and $\sigma_{\phi}(|y_{\phi}|)$ by PYTHIA 6 DW and EPOS-LHC
- $P_{\Lambda} = -0.010 \pm 0.005 (\text{stat}) \pm 0.004 (\text{syst})$ • $P_{\bar{\Lambda}} = 0.002 \pm 0.006 (\text{stat}) \pm 0.004 (\text{syst})$ • P in p_{T} and x_{F} bins: consistent with zero within estimated uncertainty $P_{\Lambda}(x_{F})$ and $P_{\bar{\Lambda}}(x_{F})$ match the behavior expected from older experiments

Backup slides

Atlas Detector

the ATLAS detector - almost full solid angle around the collision point coverage electromagnetic & hadron calorimeter, muon spectrometer

tracking detectors - azimuthal angle ϕ : full coverage, pseudorapidity coverage: $\eta < 2.5$

- pixel detector (pixel); semiconductor tracker (SCT)
- for $|\eta|$ < 2.0 transition radiation tracker (TRT)

Minimum Bias Trigger Scintillator (MBTS) - mounted at each end of the tracking detector at $z=\pm 3.56~\mathrm{m}$ segmented into 8 sectors in azimuth and two concentric rings in pseudorapidity 2.09 $<|\eta|<2.82$ and $2.82<|\eta|<3.84$

Transverse Thrust

$$T_{\perp} = \max_{\hat{m{n}}_{\perp}} rac{\sum\limits_{i} |m{
ho}_{\mathrm{T}i} \cdot \hat{m{n}}_{\perp}|}{\sum\limits_{i} p_{\mathrm{T}i}} \qquad \qquad m{ au}_{\perp} = \mathbf{1} - T_{\perp}$$

- the sum over the p_{Ti} of all charged particles in the event
- $\hat{\pmb{n}}_{\perp}$ the unit vector of the *thrust axis* maximizing the ratio
- ullet $T_{\perp}=1$ for a perfectly balanced, pencil-like, dijet topology
- $T_{\perp}=2/\pi$ for a circularly symmetric distribution of particles in the transverse plane

 au_{\perp} - complement to T_{\perp} - matches the behavior of many event shape variables:

- vanishes in a balanced dijet topology
- ullet large value of au_{ot} a departure from a two-body system

Transverse Thrust Minor

Event Plane = defined by the thrust axis $\hat{\boldsymbol{n}}_{\perp}$ and beam axis $\hat{\boldsymbol{z}}$

$$\mathcal{T}_{ ext{M}} = rac{\sum\limits_{i} |oldsymbol{
ho}_{ ext{T}i} \cdot \hat{oldsymbol{n}}_{m}|}{\sum\limits_{i} oldsymbol{
ho}_{ ext{T}i}}, \qquad \hat{oldsymbol{n}}_{m} = \hat{oldsymbol{n}}_{oldsymbol{oldsymbol{n}}} imes \hat{oldsymbol{z}}$$

The transverse thrust minor \mathcal{T}_{M} quantifies the sum of all tranverse momenta out of the event plain

- ullet $T_{
 m M}=0$ for a perfectly balanced, pencil-like, dijet topology
- $T_{\rm M}=2/\pi$ for an isotropic event (circularly symmetric distribution of particles in the transverse plane)

Sphericity

full momentum tensor of the event:

$$M_{\alpha\beta} = \sum_{i} p_{\alpha}^{i} p_{\beta}^{i}$$
 $\alpha, \beta = x, y, z$

- sum runs over all charged particles in the event
- eigenvalues $\lambda_1, \lambda_2, \lambda_3$ are normalized $\sum_i \lambda_i = 1$ and ordered that $\lambda_1 > \lambda_2 > \lambda_3$

Sphericity S measures the summed p_T^2 with respect to the event axis (the line passing through the interaction point and oriented along the eigenvector associated with the largest eigenvalue, λ_1)

$$S=\frac{3}{2}(\lambda_2+\lambda_3)$$

- S = 0 for a balanced dijet event
- S = 1 for an isotropic event

Transverse Sphericity

the **transverse sphericity S** $_{\perp}$ is defined in terms of the transverse components only:

$$\mathcal{S}_{\perp} \, = \, rac{2 \lambda_2^{xy}}{\lambda_1^{xy} + \lambda_2^{xy}}$$

where $\lambda_1^{xy} > \lambda_2^{xy}$ are two eigenvalues of S^{xy} :

$$S^{xy} = \sum_{i} \frac{1}{|\mathbf{p}_{T,i}|^2} \begin{pmatrix} p_{xi}^2 & p_{xi}p_{yi} \\ p_{yi}p_{xi} & p_{yi}^2 \end{pmatrix}$$

• allowed range: $0 \le S_{\perp} < 1$

Monte Carlo Models in Event Shapes Analysis

Generator	Version	Tune	PDF	Focus	Data	From
PYTHIA 6 PYTHIA 6 PYTHIA 6 PYTHIA 8 HERWIG ++ PYTHIA 6 HERWIG ++	6.425 6.421 6.425 8.157 2.5.1 6.425 2.5.0	AMBT2B DW Z1 A2 UE7-2 AMBT1 Default	CTEQ6L1 CTEQ5L CTEQ5L MSTW2008LO MRST LO** MRST LO** MRST LO**	MB UE UE MB UE MB UE	LHC Tevatron LHC LHC LHC Early LHC	ATLAS CDF CMS ATLAS Authors ATLAS Authors

- predictions from 5 different MC models (PYTHIA 6 AMBT2B, PYTHIA 6 DW, PYTHIA 6 Z1, PYTHIA 8 A2, and HERWIG ++ UE7-2) are compared to observed data
- PYTHIA 6 AMBT1 reference model for the analysis used to correct the data for detector effects
- HERWIG ++ 2.5.0 used for systematic studies

Measured Distributions

I. Normalized distributions:

$$(1/N_{\mathrm{ev}})dN_{\mathrm{ev}}/d au_{\perp}^{\mathrm{ch}} - (1/N_{\mathrm{ev}})dN_{\mathrm{ev}}/dT_{\mathrm{M}}^{\mathrm{ch}} - (1/N_{\mathrm{ev}})dN_{\mathrm{ev}}/dS_{\perp}^{\mathrm{ch}}$$

 ch in the event shape observables $\tau_\perp^{\rm ch},~T_{\rm M}^{\rm ch},~S_\perp^{\rm ch}$ indicating charged particles

studied separately for the following $p_{\rm T}^{\rm lead}$ regions:

- 0.5 GeV $< p_T^{lead} < 2.5$ GeV; 2.5 GeV $< p_T^{lead} < 5.0$ GeV;
- $p_{\rm T}^{\rm lead} > 10.0 \,{\rm GeV}$

 ho_{T}^{lead} - transverse momentum of the highest ho_{T} (leading) charged particle

II. Average values: $\langle \tau_{\perp}^{ch} \rangle, \langle T_{\rm M}^{ch} \rangle, \langle S_{\perp}^{ch} \rangle$ as functions of $N_{ch}, \sum p_{\rm T}$

- N_{ev} number of events with six or more charged particles within the selected kinematic range
- N_{ch} number of charged particles in an event
- ullet $\sum p_{\mathrm{T}}$ scalar sum of transverse momenta of charged particles in the event

Complement of the Transverse Thrust Distributions

PYTHIA 6 tune Z1 tuned to UE at LHC agrees best; PYTHIA 6 DW is furthest from data **AMBT2B** based on MB LHC data shows better agreement in the **lowest** p_T^{lead} ranges

AMBT2B based on MB LHC data shows better agreement in the **lowest** p_T^{lead} ranges compared to AMBT2B, **PYTHIA 8** and **HERWIG++** agree better in **intermediate** p_T^{lead}

Transverse Thrust Minor Distributions

PYTHIA 6 tune Z1 tuned to UE at LHC agrees best; PYTHIA 6 DW is furthest from data **AMBT2B** based on MB LHC data shows better agreement in the **lowest** ρ_T^{lead} ranges

AMBT2B based on MB LHC data shows better agreement in the **lowest** p_T^{lead} ranges compared to AMBT2B, **PYTHIA 8** and **HERWIG++** agree better in **intermediate** p_T^{lead}