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Motivations

One of the important longstanding theoretical questions raised by QCD is
its behaviour in the perturbative Regge limit s≫ −t
We want to identify and test suitable observables in order to test these
peculiar dynamics

Saturation
Qs

lnQ2

Y = ln 1
x

DGLAP

B
F
K

L

N
o
n
-p

er
tu

rb
at

iv
e

⇒ select semi-hard processes with s≫ p2T i ≫ Λ2
QCD where p2T i are

typical transverse scales, all of the same order
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QCD in the perturbative Regge limit

At leading logarithmic (LL) accuracy (resumming terms (αs ln s)
n), the

scattering amplitude can be written as:
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∼ s ∼ s (αs ln s) ∼ s (αs ln s)2

this can be put in the following form :

← Impact factor (process-dependent)

← Green’s function
obeys the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation

← Impact factor
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Higher order corrections

Often LL calculations don’t describe experimental data very well
⇒ What about higher orders?

The next-to-leading logarithmic (NLL) corrections to the BFKL kernel are
known (Lipatov, Fadin; Camici, Ciafaloni)
Corresponds to resumming also αs(αs ln s)n terms

Impact factors are known in some cases at NLL

γ∗
→ γ∗ at t = 0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao;

Balitski, Chirilli)

Forward jet production (Bartels, Colferai, Vacca;
Caporale, Ivanov, Murdaca, Papa, Perri;
Chachamis, Hentschinski, Madrigal, Sabio Vera)

Inclusive production of a pair of hadrons separated by a large interval of
rapidity (Ivanov, Papa)

γ∗
L

→ ρL in the forward limit (Ivanov, Kotsky, Papa)
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Mueller-Navelet jets

Mueller-Navelet jets were proposed as a possible test of BFKL dynamics at
hadron colliders

Consider two jets separated by a large
interval rapidity, i.e. each of them almost
fly in the direction of the hadron “close“ to
it, and with similar transverse momenta

In a pure LO collinear treatment, these two
jets should be emitted exactly back to
back: ϕ = 0 (ϕ = φJ,1 − φJ,2 − π)

A BFKL calculation predicts some
decorrelation because of the emission of
soft gluons in the rapidity interval

hadron 1

hadron 2

jet 1

jet 2
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Master formulas

kT -factorized differential cross section

x1

x2

k1, φ1

k2, φ2

→
→

kJ1, φJ1, xJ1

kJ2, φJ2, xJ2

dσ

d|kJ1| d|kJ2|dyJ1 dyJ2
=

∫

dφJ1 dφJ2

∫

d2
k1 d

2
k2

×Φ(kJ1, xJ1,−k1)

×G(k1,k2, ŝ)

×Φ(kJ2, xJ2,k2)

with Φ(kJ2, xJ2,k2) =
∫

dx2 f(x2)V (k2, x2) f ≡ PDF xJ = |kJ |√
s
eyJ
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Master formulas

It is convenient to define the coefficients Cn as

Cn ≡
∫

dφJ1 dφJ2 cos
(

n(φJ1 − φJ2 − π)
)

×
∫

d2
k1 d

2
k2 Φ(kJ1, xJ1,−k1)G(k1,k2, ŝ)Φ(kJ2, xJ2,k2)

n = 0 =⇒ differential cross-section

C0 =
dσ

d|kJ1|d|kJ2|dyJ1 dyJ2

n > 0 =⇒ azimuthal decorrelation

Cn
C0

= 〈cos
(

n(φJ,1 − φJ,2 − π)
)

〉 ≡ 〈cos(nϕ)〉

sum over n =⇒ azimuthal distribution

1

σ

dσ

dϕ
=

1

2π

{

1 + 2
∞
∑

n=1

cos (nϕ) 〈cos (nϕ)〉
}
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Results

Comparison with data

The following results are for

√
s = 7 TeV

35GeV < |kJ1| , |kJ2| < 60GeV

0 < |y1| , |y2| < 4.7

And we compare these with experimental data on the azimuthal correlations of
Mueller-Navelet jets at the LHC from CMS (CMS-PAS-FSQ-12-002)
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Results

Azimuthal correlation 〈cosϕ〉
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C1

C0

= 〈cosϕ〉 ≡ 〈cos(φJ1 − φJ2 − π)〉

Y ≡ |y1 − y2|

pure LL
LO vertex + NLL Green fun.
NLO vertex + NLL Green fun.

35GeV < |kJ1| < 60GeV

35GeV < |kJ2| < 60GeV

0 < |y1| < 4.7

0 < |y2| < 4.7

The NLO corrections to the jet vertex lead to a large increase of the correlation
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Results

Azimuthal correlation 〈cosϕ〉
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〈cosϕ〉 ≡ 〈cos(φJ1 − φJ2 − π)〉

Y

NLL BFKL
µ → µ/2
µ → 2µ√
s0 → √

s0/2√
s0 → 2

√
s0

CMS data

35GeV < |kJ1| < 60GeV

35GeV < |kJ2| < 60GeV

0 < |y1| < 4.7

0 < |y2| < 4.7

NLL BFKL predicts a too small decorrelation

The NLL BFKL calculation is still rather dependent on the scales,
especially the renormalization / factorization scale
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Results

A LL calculation cannot describe the experimental data

A NLL calculation does not really provide a better agreement

The NLL calculation still depends strongly on the choice of the
renormalization scale µR

An all-order calculation would be independent of the choice of µR. This
feature is lost if we truncate the perturbative series
⇒ How to choose the renormalization scale?

We decided to use the Brodsky-Lepage-Mackenzie (BLM) procedure to fix the
renormalization scale
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Results

The Brodsky-Lepage-Mackenzie (BLM) procedure resums the self-energy
corrections to the gluon propagator at one loop into the running coupling.

First attempts to apply BLM scale fixing to BFKL processes lead to
problematic results. Brodsky, Fadin, Kim, Lipatov and Pivovarov suggested
that one should first go to a physical renormalization scheme like MOM and
then apply the ’traditional’ BLM procedure, i.e. identify the β0 dependent part
and choose µR such that it vanishes.

We followed this prescription for the full amplitude at NLL.
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Results with BLM

Azimuthal correlation 〈cosϕ〉

NLL BFKL
NLL BFKL+BLM
CMS
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35GeV < |kJ1| < 60GeV

35GeV < |kJ2| < 60GeV

0 < |y1| < 4.7

0 < |y2| < 4.7

Using the BLM scale setting, the agreement with data becomes much better
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Results with BLM

Azimuthal correlation 〈cos 2ϕ〉
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Using the BLM scale setting, the agreement with data becomes much better
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Results with BLM

Azimuthal correlation 〈cos 2ϕ〉/〈cosϕ〉
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35GeV < |kJ2| < 60GeV

0 < |y1| < 4.7

0 < |y2| < 4.7

Because it is much less dependent on the scales, the observable
〈cos 2ϕ〉/〈cosϕ〉 is almost not affected by the BLM procedure and is still in
good agreement with the data
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Results with BLM

Azimuthal distribution (integrated over 6 < Y < 9.4)

NLL BFKL
NLL BFKL+BLM
CMS
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With the BLM scale setting the azimuthal distribution is in good agreement
with the data across the full ϕ range.

16 / 24



Comparison with fixed-order

Using the BLM scale setting:

The agreement of 〈cosnϕ〉 with the data becomes much better

The agreement for 〈cos 2ϕ〉/〈cosϕ〉 is still good and unchanged as this
observable is weakly dependent on µR

The azimuthal distribution is in much better agreement with the data

But the configuration chosen by CMS with kJmin1 = kJmin2 does not allow us
to compare with a fixed-order O(α3

s) treatment (i.e. without resummation)

These calculations are unstable when kJmin1 = kJmin2 because the
cancellation of some divergencies is difficult to obtain numerically
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Comparison with fixed-order

Results for an asymmetric configuration

In this section we choose the cuts as

35GeV < |kJ1| , |kJ2| < 60GeV

50GeV < Max(|kJ1|, |kJ2|)
0 < |y1| , |y2| < 4.7

And we compare our results with the NLO fixed-order code Dijet (Aurenche,
Basu, Fontannaz) in the same configuration
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Comparison with fixed-order

Azimuthal correlation 〈cos 2ϕ〉/〈cosϕ〉
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This observable is very stable in a BFKL calculation and shows a sizable
difference between with a fixed-order treatment
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Energy-momentum conservation

It is necessary to have kJmin1 6= kJmin2 for comparison with fixed order
calculations but this can be problematic for BFKL because of
energy-momentum conservation

There is no strict energy-momentum conservation in BFKL

This was studied at LL by Del Duca and Schmidt. They introduced an effective
rapidity Yeff defined as

Yeff ≡ Y
σ2→3

σBFKL,O(α3
s
)

When one replaces Y by Yeff in the expression of σBFKL and truncates to
O(α3

s), the exact 2→ 3 result is obtained
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Energy-momentum conservation

We follow the idea of Del Duca and Schmidt, but we also take into account the
NLL corrections

Variation of Yeff/Y as a function

of kJ2 for kJ1 = 35 GeV:

(
√
s = 7 TeV, Y = 8)
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At LL accuracy, Yeff is much smaller than Y when kJ1 and kJ2 are not
very similar (i.e. the BFKL calculation overestimates the cross section)

Including the NLL corrections improves the situation a lot: Yeff is now very
close to Y
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Mueller-Navelet jets and MPI

MPI contributions should be enhanced when going to higher energies / lower
transverse momenta

+

single partonic contribution MPI-type contribution

When do these contributions start to be of the same order of magnitude as
single parton scattering?
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Mueller-Navelet jets and MPI
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single P ladder two P ladders interferences

∼ sαP ∼ (??) s2αP ???

Problems to solve:

Coupling to initial protons

Interference terms

...
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Conclusions

We studied Mueller-Navelet jets at full (vertex + Green’s function) NLL
accuracy and compared our results with the first data from the LHC

The agreement with CMS data at 7 TeV is greatly improved by using the
BLM scale fixing procedure

A measurement with asymmetric pT cuts would be useful to compare with
a fixed-order treatment

Energy-momentum conservation seems to be less severely violated at NLL
accuracy

Probably an interesting process to study MPI at small x but still several
issues to solve
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