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Underlying Event Observables
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The underlying event:
◦ Additional activity on top of the hard scattering component of the collision

Hard interaction ISR/FSR

MPI

Everything

MPI, ISR/FSR, hadronisation, colour reconnections, beam 
remnants, soft rescattering of beam remnants etc…



Underlying Event Observables
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Reference hard direction
Towards region: Δ𝜙 < 60°

Away region: Δ𝜙 > 120°

Transverse region: 60° < Δ𝜙 < 120°



Underlying Event Observables
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Towards region: Δ𝜙 < 60°

Away region: Δ𝜙 > 120°

Transverse region: 60° < Δ𝜙 < 120°

UE observable: 

𝑁𝑐ℎ / Δ𝜂Δ Δ𝜙 , Σ𝑝𝑇 / Δ𝜂Δ Δ𝜙

TransMAX(TransMIN): activity in 
maximum(minimum) activity side of 
transverse region

TransDIF: (TransMAX-TransMIN) activity

MPI/BBR

ISR/FSR
+MPI/BBR



Data/MC samples
Data samples:

◦ Dedicated run of a few days in March 2011: 

3 different triggered samples
◦ Minimum bias

◦ Jet20 (1 jet with 𝑝𝑇 > 20 GeV)

◦ Jet40 (1 jet with 𝑝𝑇 > 40 GeV)
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Data/MC samples
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Various PYTHIA6 and PYTHIA8 are used for event and track selection 
validation, data correction as well as systematic:

Validation and correction: PYTHIA 6 Z2

Model dependent systematic: PYTHIA 8 4C

Monte Carlo tunes for comparison with data:

PYTHIA 6 (version 6.426): Z2*, CUETP6S1

PYTHIA 8 (version 8.175): 4C, CUETP8S1, Monash, CUETP8M1

HERWIG++ (version 2.7.0): UE-EE-5C



Event and track selections
Event selection: 1vertex (within 10 cm of beamspot)

Track selection: Highpurity tracks, 𝑝𝑇 > 0.5 GeV, 𝜂 < 2.0
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Event and track selections
Same tracks used for jet seeding only with 𝜂 < 2.5:

◦ Leading track-jet (SisCone: 𝑅 = 0.5; using tracks with 𝑝𝑇 > 0.5 GeV and 𝜂 < 2.5)

◦ 𝑝𝑇 > 1 GeV, 𝜂 < 2.0
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Data Correction
Data corrected with unfolding
◦ Iterative “Bayesian” method
𝑋𝑇𝑟𝑎𝑐𝑘𝑠, 𝑝𝑇𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝑇𝑟𝑎𝑐𝑘𝐽𝑒𝑡 2𝐷

𝑢𝑛𝑓𝑜𝑙𝑑
𝑋𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠, 𝑝𝑇𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝐺𝑒𝑛𝐽𝑒𝑡 2𝐷

𝑝𝑟𝑜𝑓𝑖𝑙𝑒
𝑋𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 , 𝑝𝑇𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝐺𝑒𝑛𝐽𝑒𝑡 𝑃𝑟𝑜𝑓𝑖𝑙𝑒

Summary of systematic uncertainties:
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Source Systematic (%)

Impact Parameter Sig. 2-4

Track sel. 0.2

Fake Mis-modelling 0.4-0.5

Model dep. 1-4

Source Systematic (%)

Dead Channel 0.1

Beamspot 0.2

Material Budget 1.0

Tracker Alignment 0.2-0.3



Results
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Transverse densities
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Comparison with PYTHIA6 (Z2*, CUETP6S1), PYTHIA8 (4C, CUETP8S1), 
HERWIG++ (UE-EE-5C).
Best performing: Z2*, CUETP6S1, CUETP8S1, (UE-EE-5C performing pretty well, 
but slightly overestimating the transverse densities).



TransMAX densities
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4C does describes multiplicity density well but fails to describe Σ𝑝𝑇 density.
PYTHIA6 tunes tend to overestimate multiplicity densities; CUETP6S1 does 
better. PYTHIA6 does better than PYTHIA8 tunes for Σ𝑝𝑇 density.
Herwig++ performance similar to PYTHIA6 tunes.



TransMIN densities
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Z2* and the CUET tunes describe the transMIN densities well.

Herwig++ overestimating particle density and Σ𝑝𝑇 density at high 𝑝𝑇
𝑗𝑒𝑡

.
Distinct transition from rising to plateau region due to the transMIN activity 
being dominated by MPI/BBR.



TransDIF densities
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All tunes do better for transDIF densities.
CUET tunes are performing best overall, Z2* describes Σ𝑝𝑇 density well.
Herwig++ describing the densities well, especially Σ𝑝𝑇 density.
TransDIF activity rising faster in “plateau” region due to sensitivity to ISR/FSR.



Energy dependence
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Center-of-mass energy dependence compared with Z2*, CUETP8S1 and UE-EE-5C.
Strong growth of UE activity at similar values of leading jet 𝑝𝑇.
CUETP8S1 predicts the center-of-mass energy dependence well.



Energy dependence (P8)
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Center-of-mass energy dependence compared with CUETP8S1, Monash and CUETP8M1.
Strong growth of UE activity at similar values of leading jet 𝑝𝑇.
All tunes quite similar and predict the center-of-mass energy dependence well.



Summary
UE @ 2.76 TeV has been measured and fully corrected 
for detector effects and selection efficiencies for the 
transverse, transMIN, transMAX and transDIF densities
◦ Separation into various transverse activities allows for 

better sensitivities to ISR/FSR and MPI/BBR

Results are compared to various PYTHIA6, PYTHIA8 and 
HERWIG++ tunes

Comparison is made with UE @ 0.9 and 7 TeV for 
transverse densities
◦ Allows for better tuning of energy dependence of the MC
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END

Thank you for your attention!
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Appendix
COMPARISON WITH OTHER TUNES
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Transverse densities (P8)
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Comparison with PYTHIA6 (Z2*), PYTHIA8 (4C, CUETP8S1, Monash, CUETP8M1).
PYTHIA8 tunes all performing similarly. All new tunes performing better than 4C.
All PYTHIA8 tunes underestimate Σ𝑝𝑇 sum density. Best performing: CUETP8S1



TransMAX densities (P8)
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PYTHIA8 tunes performing similarly to transverse densities.



TransMIN densities (P8)
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PYTHIA8 tunes describe particle density well.
Most tunes have lower Σ𝑝𝑇 density than data at transition region.
Best performing: CUETP8S1



TransDIF densities (P8)
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PYTHIA8 tunes have very similar performance.
Particle density is described well.
Σ𝑝𝑇 density is slightly underestimated at transition region for most tunes.
Best performing: CUETP8S1


