

Underlying Event at 2.76 TeV

Wei Yang Wang
National University of Singapore (NUS), University of Antwerp (UA)
On behalf of the CMS Collaboration
MPI@LHC 2014
03/11/2014

Outline

- 1. Underlying event observables
- 2. Data/MC samples
- 3. Events and track selections
- 4. Data correction (Unfolding)
- 5. Results

Underlying Event Observables

The underlying event:

Additional activity on top of the hard scattering component of the collision

MPI, ISR/FSR, hadronisation, colour reconnections, beam remnants, soft rescattering of beam remnants etc...

Underlying Event Observables

Towards region: $|\Delta \phi| < 60^{\circ}$

Away region: $|\Delta \phi| > 120^{\circ}$

Transverse region: $60^{\circ} < |\Delta \phi| < 120^{\circ}$

Reference hard direction

Leading Track Jet direction

Underlying Event Observables

Towards region: $|\Delta \phi| < 60^{\circ}$

Away region: $|\Delta \phi| > 120^{\circ}$

Transverse region: $60^{\circ} < |\Delta \phi| < 120^{\circ}$

UE observable:

 $\langle N_{ch} \rangle / [\Delta \eta \Delta(\Delta \phi)], \langle \Sigma p_T \rangle / [\Delta \eta \Delta(\Delta \phi)]$

TransMAX(TransMIN): activity in maximum(minimum) activity side of transverse region

TransDIF: (TransMAX-TransMIN) activity

Data/MC samples

Data samples:

Dedicated run of a few days in March 2011:

3 different triggered samples

- Minimum bias
- Jet20 (1 jet with $p_T > 20$ GeV)
- $^{\circ}$ Jet40 (1 jet with $p_T > 40$ GeV)

Data/MC samples

Various PYTHIA6 and PYTHIA8 are used for event and track selection validation, data correction as well as systematic:

Validation and correction: PYTHIA 6 Z2

Model dependent systematic: PYTHIA 8 4C

Monte Carlo tunes for comparison with data:

PYTHIA 6 (version 6.426): Z2*, CUETP6S1

PYTHIA 8 (version 8.175): 4C, CUETP8S1, Monash, CUETP8M1

HERWIG++ (version 2.7.0): UE-EE-5C

Event and track selections

Event selection: 1vertex (within 10 cm of beamspot)

Track selection: Highpurity tracks, $p_T > 0.5$ GeV, $|\eta| < 2.0$

Event and track selections

Same tracks used for jet seeding only with $|\eta| < 2.5$:

- Leading track-jet (SisCone: R=0.5; using tracks with $p_T>0.5$ GeV and $|\eta|<2.5$)
 - $p_T > 1$ GeV, $|\eta| < 2.0$

Data Correction

Data corrected with unfolding

Iterative "Bayesian" method

$$\left(X_{Tracks}, p_{T_{Leading\ TrackJet}}\right)_{2D} \xrightarrow{unfold} \left(X_{Particles}, p_{T_{Leading\ GenJet}}\right)_{2D} \xrightarrow{profile} \left(\langle X_{Particles}\rangle, p_{T_{Leading\ GenJet}}\right)_{Profile}$$

Summary of systematic uncertainties:

Source	Systematic (%)	Source	Systematic (%)
Impact Parameter Sig.	2-4	Dead Channel	0.1
Track sel.	0.2	Beamspot	0.2
Fake Mis-modelling	0.4-0.5	Material Budget	1.0
Model dep.	1-4	Tracker Alignment	0.2-0.3

Results

Transverse densities

Comparison with PYTHIA6 (Z2*, CUETP6S1), PYTHIA8 (4C, CUETP8S1), HERWIG++ (UE-EE-5C).

Best performing: Z2*, CUETP6S1, CUETP8S1, (UE-EE-5C performing pretty well, but slightly overestimating the transverse densities).

TransMAX densities

4C does describes multiplicity density well but fails to describe Σp_T density. PYTHIA6 tunes tend to overestimate multiplicity densities; CUETP6S1 does better. PYTHIA6 does better than PYTHIA8 tunes for Σp_T density. Herwig++ performance similar to PYTHIA6 tunes.

TransMIN densities

Z2* and the CUET tunes describe the transMIN densities well.

Herwig++ overestimating particle density and Σp_T density at high p_T^{jet} . Distinct transition from rising to plateau region due to the *transMIN* activity being dominated by MPI/BBR.

TransDIF densities

All tunes do better for transDIF densities.

CUET tunes are performing best overall, Z2* describes Σp_T density well. Herwig++ describing the densities well, especially Σp_T density. TransDIF activity rising faster in "plateau" region due to sensitivity to ISR/FSR.

Energy dependence

Center-of-mass energy dependence compared with Z2*, CUETP8S1 and UE-EE-5C. Strong growth of UE activity at similar values of leading jet p_T . CUETP8S1 predicts the center-of-mass energy dependence well.

Energy dependence (P8)

Center-of-mass energy dependence compared with CUETP8S1, Monash and CUETP8M1. Strong growth of UE activity at similar values of leading jet p_T .

All tunes quite similar and predict the center-of-mass energy dependence well.

Summary

UE @ 2.76 TeV has been measured and fully corrected for detector effects and selection efficiencies for the *transverse*, *transMIN*, *transMAX* and *transDIF* densities

 Separation into various transverse activities allows for better sensitivities to ISR/FSR and MPI/BBR

Results are compared to various PYTHIA6, PYTHIA8 and HERWIG++ tunes

Comparison is made with UE @ 0.9 and 7 TeV for *transverse* densities

Allows for better tuning of energy dependence of the MC

END

Thank you for your attention!

Appendix

COMPARISON WITH OTHER TUNES

Transverse densities (P8)

Comparison with PYTHIA6 (Z2*), PYTHIA8 (4C, CUETP8S1, Monash, CUETP8M1). PYTHIA8 tunes all performing similarly. All new tunes performing better than 4C. All PYTHIA8 tunes underestimate Σp_T sum density. Best performing: CUETP8S1

TransMAX densities (P8)

PYTHIA8 tunes performing similarly to transverse densities.

TransMIN densities (P8)

PYTHIA8 tunes describe particle density well.

Most tunes have lower Σp_T density than data at transition region.

Best performing: CUETP8S1

TransDIF densities (P8)

PYTHIA8 tunes have very similar performance.

Particle density is described well.

 Σp_T density is slightly underestimated at transition region for most tunes.

Best performing: CUETP8S1