Saturation effects on Heavy Quark production in pA collisions

SGW2014, Padova, December 2014

François Gelis IPhT, Saclay

1 Generalities on factorization

What is factorization? Causality DGLAP BFKL Limitations

O Gluon saturation at small x

What is a hadron? Gluon saturation DGLAP and saturation? Dense-dilute limit

3 Heavy quark production

Kinematics QQbar cross-section Large Nc limit Violations of Kt-factorization General trends

Generalities on factorization What is factorization?

Causality DGLAP BFKL Limitations

O Gluon saturation at small x

Heavy quark production

François Gelis

Gluon saturation and Heavy Quarks 1/47

Padova, December 2014

- cea
- QCD is the fundamental theory of strong interactions among quarks and gluons
- Experiments involve hadrons in their initial and final states, not quarks and gluons
- Hadrons cannot be described perturbatively in QCD
- Scattering amplitudes with time-like on-shell momenta cannot be computed on the lattice
 - ▷ How can we compare theory and experiments?

▷ Factorization : separation of short distances (perturbative) and long distance (non perturbative)

Quantum mechanical expression of a transition amplitude (exact)

transition probability
from hadrons to X
$$\equiv \left|\sum_{h_1h_2 \to X}^{\text{Amplitudes}}\right|^2$$

- Some quantum interferences are neglected. Is this legitimate?
- When we compute loop corrections, where should they go?
- Is this *factorization* possible to all orders?

François Gelis

.

- Some loop corrections in $\mathbb{O}_{\text{partons}}$ are enhanced by large logarithms, e.g.

$$\alpha_s \ln\left(\frac{M^2}{m_{_H}^2}\right) \quad , \qquad \alpha_s \ln\left(\frac{s}{M^2}\right) \sim \alpha_s \ln\left(\frac{1}{x}\right)$$

Note : the log that occurs depends on the details of the kinematics

- Bjorken limit: $s, M^2 \rightarrow +\infty$ with s/M^2 fixed
- Regge limit: $s \to +\infty$, M^2 fixed
- These logs upset a naive application of perturbation theory when $\alpha_s \ln(\cdot) \sim 1 > they must be resummed$
- This resummation can be performed analytically
 - the result of the resummation is universal
 - all the leading logs can be absorbed in F
 - \triangleright the factorization formula remains true
 - \triangleright this summation dictates how *F* evolves with M^2 or *x*

- These logarithms tell us that the relevant parton distributions depend on the resolution scales (in time and in transverse momentum) associated to a given process
- Calculation of some process at LO :

$$\begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \begin{pmatrix} x_1 = M_{\perp} \ e^{+Y} / \sqrt{s} \\ x_2 = M_{\perp} \ e^{-Y} / \sqrt{s} \\ \end{pmatrix}$$

- These logarithms tell us that the relevant parton distributions depend on the resolution scales (in time and in transverse momentum) associated to a given process
- Radiation of an extra gluon :

$$\xrightarrow{x_{1}} \left\{ M_{\perp}, Y \right\} \implies \alpha_{s} \int_{x_{1}} \frac{dz}{z} \int_{x_{1}}^{M_{\perp}} \frac{d^{2}\vec{k}_{\perp}}{k_{\perp}^{2}}$$

 Practical consequence : pQCD predicts not only the partonic matrix element but also the evolution ∂_MF (or ∂_xF)

 \triangleright the only required non-perturbative input is $F(x, M_0)$ or $F(x_0, M)$

Generalities on factorization What is factorization? Causality DGLAP BFKL Limitations

O Gluon saturation at small x

3 Heavy quark production

Why factorization works

• The duration of the collision is very short: $\tau_{coll} \sim E^{-1}$

Why factorization works

- The duration of the collision is very short: $\tau_{coll} \sim E^{-1}$
- The logarithms we need to resum arise from the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision

Why factorization works

- The duration of the collision is very short: $\tau_{coll} \sim E^{-1}$
- The logarithms we need to resum arise from the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision
- The projectiles are not in causal contact before the impact
 b the logarithms are intrinsic properties of the projectiles, independent of the measured observable

Generalities on factorization

What is factorization? Causality DGLAP BFKL Limitations

O Gluon saturation at small x

Heavy quark production

François Gelis

Gluon saturation and Heavy Quarks 6/47

Padova, December 2014

Common forms of factorization: 1. DGLAP

- Logs of $M_{\perp} \Longrightarrow$ DGLAP. Important when :
 - $M_{\perp} \gg \Lambda_{_{QCD}}$, while x_1, x_2 are rather large
- Cross-sections read :

$$\frac{d\sigma}{dYd^{2}\vec{\boldsymbol{P}}_{\perp}} \propto F(x_{1},\boldsymbol{M}_{\perp}^{2}) F(x_{2},\boldsymbol{M}_{\perp}^{2}) |\mathcal{M}|^{2}$$

with $x_{1,2} = M_{\perp} \exp(\pm Y) / \sqrt{s}$

- Note : there are convolutions in *x*₁ and *x*₂ if some particles are integrated out in the final state
- The factorization of logarithms has been proven to all orders for sufficiently inclusive quantities (see Collins, Soper, Sterman, 1984–1985)

Generalities on factorization

What is factorization? Causality DGLAP BFKL Limitations

O Gluon saturation at small x

Heavy quark production

Common forms of factorization: 2. BFKL

Collins, Ellis (1991), Catani, Ciafaloni, Hautmann (1991)

- Logs of $1/x \implies BFKL$. Important when :
 - M_{\perp} remains moderate, while x_1 or x_2 (or both) are small
- The BFKL equation is non-local in transverse momentum
 ▷ it applies to non-integrated gluon distributions φ(x, k
 ⊥)

$$xG(x,Q^2) = \int^{Q^2} \frac{d^2 \vec{k}_\perp}{(2\pi)^2} \ \varphi(x,\vec{k}_\perp)$$

 \triangleright the matrix element must calculated for off-shell gluons with ${\vec k}_\perp \neq {\vec 0}$

• In this framework, cross-sections read :

$$\frac{d\sigma}{dYd^{2}\vec{\boldsymbol{P}}_{\perp}} \propto \int_{\vec{\boldsymbol{k}}_{1\perp},\vec{\boldsymbol{k}}_{2\perp}} \delta(\vec{\boldsymbol{k}}_{1\perp} + \vec{\boldsymbol{k}}_{2\perp} - \vec{\boldsymbol{P}}_{\perp}) \varphi_{1}(\boldsymbol{x}_{1},\boldsymbol{k}_{1\perp}) \varphi_{2}(\boldsymbol{x}_{2},\boldsymbol{k}_{2\perp}) \frac{|\mathcal{M}|^{2}}{k_{1\perp}^{2}k_{2\perp}^{2}}$$

Generalities on factorization

What is factorization? Causality DGLAP BFKL Limitations

O Gluon saturation at small x

Heavy quark production

Conditions of validity

• Dilute regime : one parton in each projectile interact (what the standard PDFs are made for)

Conditions of validity

- Dilute regime : one parton in each projectile interact (what the standard PDFs are made for)
- Dense regime : multiparton processes become crucial
 > standard forms of factorization break down
 > new distributions are required

Growth of the gluon distribution at small x

• Gluons dominate at any $x \le 10^{-1}$

Generalities on factorization What is factorization? Causality DOL AD

BFKL

2 Gluon saturation at small x

What is a hadron? Gluon saturation DGLAP and saturation? Dense-dilute limit

Heavy quark production

Kinematics QQbar cross-section Large Nc limit Violations of Kt-factorization General trends

Generalities on factorization

O Gluon saturation at small x What is a hadron?

Gluon saturation DGLAP and saturation? Dense-dilute limit

Heavy quark production

François Gelis

Gluon saturation and Heavy Quarks 11/47

Padova, December 2014

Nucleon partonic structure

At low energy:

- Fluctuations at all space-time scales smaller than its size
- Only the fluctuations that are longer lived than the external probe participate in the interaction process
- Interactions are very complicated if the constituents of the nucleon have a non trivial dynamics over time-scales comparable to those of the probe

Nucleon partonic structure

At high energy:

- Dilation of all internal time-scales of the nucleon
- Interactions among constituents now take place over time-scales that are longer than the characteristic time-scale of the probe
 the constituents behave as if they were free
- Many fluctuations live long enough to be seen by the probe
 ▷ the nucleon appears denser at small x
- Pre-existing fluctuations are frozen over the time-scale of the probe, and act as static sources of new partons

Generalities on factorization

Gluon saturation at small x What is a hadron? Gluon saturation DGLAP and saturation? Dense-dilute limit

Heavy quark production

François Gelis

Gluon saturation and Heavy Quarks 12/47

Padova, December 2014

 \triangleright at low energy, only valence quarks are present in the hadron wave function

> when energy increases, new partons are emitted

 \triangleright the emission probability is $\alpha_s \int \frac{dx}{x} \sim \alpha_s \ln(\frac{1}{x})$, with *x* the longitudinal momentum fraction of the gluon

 \triangleright at small-*x* (i.e. high energy), these logs need to be resummed

▷ as long as the density of constituents remains small, the evolution is linear: the number of partons produced at a given step is proportional to the number of partons at the previous step

> eventually, the partons start overlapping in phase-space

François Gelis

Gluon saturation and Heavy Quarks 13/47

Padova, December 2014

 parton recombination becomes favorable
 after this point, the evolution is non-linear: the number of partons created at a given step depends non-linearly on the number of partons present previously
 Balitsky (1996), Kovchegov (1996,2000)
 Jalilian-Marian, Kovner, Leonidov, Weigert (1997,1999)
 Iancu, Leonidov, McLerran (2001) • When their occupation number becomes large, gluons can recombine :

Gluon Saturation

Saturation domain

Degrees of freedom [McLerran, Venugopalan (1994)]

- $p_{\perp}^2 \sim Q_s^2 \sim \Lambda_{_{\rm OCD}} e^{\lambda(y_{\rm proj}-y)}$, $p_z \sim Q_s e^{y-y_{\rm obs}}$
- Fast partons : frozen dynamics, negligible $p_{\perp} \Rightarrow$ classical sources
- Slow partons : evolve with time \Rightarrow gauge fields

Degrees of freedom [McLerran, Venugopalan (1994)]

- $p_{\perp}^2 \sim Q_s^2 \sim \Lambda_{_{\rm OCD}} e^{\lambda(y_{\rm proj}-y)}$, $p_z \sim Q_s e^{y-y_{\rm obs}}$
- Fast partons : frozen dynamics, negligible $p_{\perp} \Rightarrow$ classical sources
- Slow partons : evolve with time \Rightarrow gauge fields

[McLerran, Venugopalan (1994)]

•
$$p_{\perp}^2 \sim Q_s^2 \sim \Lambda_{_{\rm QCD}} e^{\lambda(y_{\rm proj}-y)}$$
, $p_z \sim Q_s e^{y-y_{\rm obs}}$

- Fast partons : frozen dynamics, negligible $p_{\perp} \Rightarrow$ classical sources
- Slow partons : evolve with time \Rightarrow gauge fields

Cancellation of the cutoff dependence

- The cutoff y_{cut} is arbitrary and should not affect the result
- The probability density *W*[ρ] changes with the cutoff
- Loop corrections cancel the cutoff dependence from W[ρ]
B-JIMWLK evolution equation

[Jalilian-Marian, Kovner, Leonidov, Weigert (1998)] [Balitsky (1996)] [lancu, Leonidov, McLerran (2001)]

- Mean field approx. (BK equation) : [Kovchegov (1999)]
- Langevin form of B-JIMWLK : [Blaizot, lancu, Weigert (2003)]
- First numerical solution : [Rummukainen, Weigert (2004)]

[Jalilian-Marian, Kovner, Leonidov, Weigert (1998)] [Balitsky (1996)] [lancu, Leonidov, McLerran (2001)]

B-JIMW Recent developments : Running coupling correction [Lappi, Mäntysaari (2012)] B-JIMWLK equation at Next to Leading Log [Kovner, Lublinsky, Mulian (2013)]
Me [Caron-Huot (2013)][Balitsky, Chirilli (2013)]
Langevin form of B-JIMWLK : [Blaizot, lancu, Weigert (2003)]

First numerical solution : [Rummukainen, Weigert (2004)]

Multiple scatterings

• Power counting :

$$\frac{2 \text{ scatterings}}{1 \text{ scatterings}} \sim \frac{Q_s^2}{M_1^2} \quad \text{with} \quad Q_s^2 \sim \alpha_s \frac{xG(x, Q_s^2)}{\pi R^2}$$

- When this ratio becomes \sim 1, all the rescattering corrections become important

 \triangleright one must resum all $\left[Q_s/M_{\perp}\right]^n$

These effects are not accounted for in DGLAP or BFKL

O Gluon saturation at small x

What is a hadron? Gluon saturation DGLAP and saturation? Dense-dilute limit

Heavy quark production

• Question 1: can one define standard PDFs in the saturated regime?

▷ yes, but they are insufficient, because they do not provide any information about multi-parton correlations

• Question 2: can one define modified PDFs that would encode these correlations?

 $\,\triangleright\,$ for a given process, maybe. But these functions would not be universal

DGLAP and saturation

• Question 3: my favorite observable sits in the dilute domain: I should be fine with the usual PDFs?

 \triangleright maybe not... PDFs may have been contaminated by an improper evolution from a smaller *Q*:

O Gluon saturation at small x

What is a hadron? Gluon saturation DGLAP and saturation? Dense-dilute limit

Heavy quark production

Dense-dilute limit

• Factorization in the dense-dense regime:

$$\langle \mathfrak{O} \rangle_{\text{LeadingLog}} = \int \left[\boldsymbol{D} \rho_1 \, \boldsymbol{D} \rho_2 \right] \, W_1 \left[\rho_1 \right] \, W_2 \left[\rho_2 \right] \, \mathfrak{O} \left[\rho_{1,2} \right]$$

• When ρ_1 is a weak source (projectile 1 is dilute):

$$\mathbb{O}[\rho_{1,2}] = \int_{\vec{k}_{1\perp}} \rho_1^2(\vec{k}_{1\perp}) \ \mathbb{O}_2[\vec{k}_{1\perp},\rho_2] + \mathbb{O}(\rho_1^4)$$

and $\mathcal{O}_2[\vec{k}_{1\perp}, \rho_2]$ has a compact analytical expression

Dense-dilute limit

• For the dilute projectile, one needs only the ordinary (non-integrated) gluon distribution:

$$\int [D\rho_{1}] W_{1}[\rho_{1}] \rho_{1}^{2}(\vec{k}_{1\perp}) \equiv \varphi_{1}(\vec{k}_{1\perp})$$

The expectation value of O can be rewritten as

$$\left\langle \mathfrak{O} \right\rangle_{_{\text{LLog}}} = \int_{\vec{\textbf{k}}_{1\perp}} \phi_1(\vec{\textbf{k}}_{1\perp}) \int \left[\textbf{D} \rho_2 \right] \, \textbf{W}_2\left[\rho_2 \right] \, \mathfrak{O}_2[\vec{\textbf{k}}_{1\perp}, \rho_2]$$

• This can be further simplified by noting that $\mathbb{O}_2[\vec{k}_{1\perp},\rho_2]$ contains only simple correlators of Wilson lines

 $\,\triangleright\,$ one can replace the JIMWLK equation by the much simpler BK equation (mean field approximation)

François Gelis

What is factorization? Causality DGLAP BFKL Limitations

2 Gluon saturation at small x

What is a hadron? Gluon saturation DGLAP and saturation? Dense-dilute limit

3 Heavy quark production

Kinematics QQbar cross-section Large Nc limit Violations of Kt-factorization General trends

O Gluon saturation at small x

Heavy quark production Kinematics

QQbar cross-section Large Nc limit Violations of Kt-factorization General trends

Relevant x range at the LHC

• x coverage for $c\bar{c}$ production at the LHC : $p_{\perp} = 2 \text{ GeV}$

Relevant x range at the LHC

• x coverage for $c\bar{c}$ production at the LHC : $p_{\perp} = 10 \text{ GeV}$

 \triangleright very small values of x reached in one of the projectiles when produced forward

O Gluon saturation at small x

 Heavy quark production Kinematics QQbar cross-section Large Nc limit Violations of Kt-factorization General trends

Classical color field

Blaizot, FG, Venugopalan (2004)

- ρ_p is a weak source, ρ_A is a strong source \Rightarrow we want the pair production amplitude to first order in ρ_p and to all orders in ρ_A
- Finding the color field : Yang-Mills equations :

$$\begin{split} & [D_{\mu}, \boldsymbol{F}^{\mu\nu}] = \boldsymbol{J}^{\nu} \quad, \qquad [D_{\nu}, \boldsymbol{J}^{\nu}] = \boldsymbol{0} \\ & \boldsymbol{J}^{\nu}|_{\text{lowest order}} = \delta^{\nu+} \delta(\boldsymbol{x}^{-}) \rho_{\rho}(\boldsymbol{x}_{\perp}) + \delta^{\nu-} \delta(\boldsymbol{x}^{+}) \rho_{A}(\boldsymbol{x}_{\perp}) \\ & \partial_{\mu} \boldsymbol{A}^{\mu} = \boldsymbol{0} \qquad \text{(Lorenz gauge)} \end{split}$$

• (Very sketchy) diagrammatic interpretation:

QQbar production amplitude

• Total amplitude:

$$\begin{split} \mathcal{M}_{F} &= g^{2} \int_{\vec{k}_{1\perp},\vec{k}_{\perp}} \frac{\rho_{P,a}(\vec{k}_{1\perp})}{k_{1\perp}^{2}} \int_{\vec{x}_{\perp},\vec{y}_{\perp}} e^{i\vec{k}_{\perp}\cdot\vec{x}_{\perp}} e^{i(\vec{p}_{\perp}+\vec{q}_{\perp}-\vec{k}_{\perp}-\vec{k}_{\perp})\cdot\vec{y}_{\perp}} \\ &\times \overline{u}(\vec{q}) \left\{ [t^{b} U_{ba}(\vec{x}_{\perp})] \mathcal{L} + [\widetilde{U}(\vec{x}_{\perp})t^{a}\widetilde{U}^{\dagger}(\vec{y}_{\perp})] T_{q\bar{q}}(\vec{k}_{\perp}) \right\} V(\vec{p}) \end{split}$$

with L Lipatov's effective vertex, and

$$T_{q\bar{q}}(\vec{k}_{\perp}) \equiv \frac{\gamma^{+}(\vec{q} - \vec{k} + m)\gamma^{-}(\vec{q} - \vec{k} - \vec{k}_{\perp} + m)\gamma^{+}}{2p^{+}[(\vec{q}_{\perp} - \vec{k}_{\perp})^{2} + m^{2}] + 2q^{+}[(\vec{q}_{\perp} - \vec{k}_{\perp} - \vec{k}_{\perp})^{2} + m^{2}]}$$

• Notes: \tilde{U} = Wilson line for a quark U_{ba} = Wilson line for a gluon

François Gelis

Pair production cross-section:

$$\frac{d\sigma_{q\bar{q}}}{d^{2}\vec{p}_{\perp}d^{2}\vec{q}_{\perp}dy_{\rho}dy_{q}} = \frac{\alpha_{s}^{2}N}{8\pi^{4}d_{A}}\int_{\vec{k}_{1\perp},\vec{k}_{2\perp}} \frac{\delta(\vec{p}_{\perp}+\vec{q}_{\perp}-\vec{k}_{1\perp}-\vec{k}_{2\perp})}{k_{1\perp}^{2}k_{2\perp}^{2}} \times \left\{ \int_{\vec{k}_{\perp},\vec{k}'_{\perp}} \operatorname{tr}\left[(\vec{q}+m)T_{q\bar{q}}(\vec{k}_{\perp})(\vec{p}-m)T_{q\bar{q}}^{*}(\vec{k}'_{\perp}) \right] \phi_{A}^{(4)}(\vec{k}_{2\perp}|\vec{k}_{\perp},\vec{k}'_{\perp}) + \int_{\vec{k}_{\perp}} \operatorname{tr}\left[(\vec{q}+m)T_{q\bar{q}}(\vec{k}_{\perp})(\vec{p}-m)\mathcal{L}^{*} + \operatorname{h.c.} \right] \phi_{A}^{(3)}(\vec{k}_{2\perp}|\vec{k}_{\perp}) + \operatorname{tr}\left[(\vec{q}+m)\mathcal{L}(\vec{p}-m)\mathcal{L}^{*} \right] \phi_{A}^{(2)}(\vec{k}_{2\perp}) \right\} \phi_{1}(\vec{k}_{1\perp})$$

▷ standard factorization broken for the nucleus: one needs three different "distributions" in order to describe the target

François Gelis

Target correlators

• Target "gluon distributions":

$$\Phi_{A}^{(2)}(\vec{k}_{2\perp}) \propto \int\limits_{\vec{x}_{\perp},\vec{y}_{\perp}} e^{i\vec{k}_{2\perp}\cdot(\vec{x}_{\perp}-\vec{y}_{\perp})} \operatorname{tr} \left\langle U(\vec{x}_{\perp})U^{\dagger}(\vec{y}_{\perp}) \right\rangle$$

$$\Phi_{A}^{(3)}(\vec{k}_{2\perp}|\vec{k}_{\perp}) \propto \int\limits_{\vec{x}_{\perp},\vec{y}_{\perp},\vec{z}_{\perp}} e^{i\left[\vec{k}_{\perp}\cdot\vec{x}_{\perp}+(\vec{k}_{2\perp}-\vec{k}_{\perp})\cdot\vec{y}_{\perp}-\vec{k}_{2\perp}\cdot\vec{z}_{\perp}\right]} \times \operatorname{tr}\left\langle \widetilde{U}(\vec{x}_{\perp})t^{a}\widetilde{U}^{\dagger}(\vec{y}_{\perp})t^{b}U_{ba}(\vec{z}_{\perp})\right\rangle$$

$$\Phi_{A}^{(4)}(\vec{k}_{2\perp}|\vec{k}_{\perp},\vec{k}_{\perp}') \propto \int e^{i\left[\vec{k}_{\perp}\cdot\vec{x}_{\perp}-\vec{k}_{\perp}'\cdot\vec{x}_{\perp}'+(\vec{k}_{2\perp}-\vec{k}_{\perp})\cdot\vec{y}_{\perp}-(\vec{k}_{2\perp}-\vec{k}_{\perp}')\cdot\vec{y}_{\perp}'\right]} \\ \vec{x}_{\perp},\vec{y}_{\perp},\vec{x}_{\perp}',\vec{y}_{\perp}' \qquad \times \operatorname{tr}\left\langle \widetilde{U}(\vec{x}_{\perp})t^{a}\widetilde{U}^{\dagger}(\vec{y}_{\perp})\widetilde{U}(\vec{y}_{\perp}')t^{a}\widetilde{U}(\vec{x}_{\perp}')\right\rangle$$

O Gluon saturation at small x

Heavy quark production
 Kinematics
 QQbar cross-section
 Large Nc limit
 Violations of Kt-factorization
 General trends

Large Nc limit

- Large *N* approximation :
 - The evaluation of the exact 3-point function is extremely time consuming
 - The 3-point function becomes a product of two 2-point functions in the large *N* limit ⊳ much faster numerical evaluation

Large Nc limit

• Quark cross-section : exact vs. large N

 \triangleright From now on, use the large *N* approximation in order to speed up the computations

François Gelis

O Gluon saturation at small x

Heavy quark production

Kinematics QQbar cross-section Large Nc limit Violations of Kt-factorization General trends

Limit of Kt factorization

cea

Fujii, FG, Venugopalan (2005)

• The quark cross-section factorizes if the the 3-point and 2-point functions are related by:

$$\Phi_{A}^{(3)}(\vec{k}_{2\perp}|\vec{k}_{\perp}) = (2\pi)^{2} \frac{1}{2} \left[\delta(\vec{k}_{\perp}) + \delta(\vec{k}_{\perp} - \vec{k}_{2\perp}) \right] \Phi_{A}^{(2)}(\vec{k}_{2\perp})$$

- This relation would be satisfied if the QQ pair interacts with the target in such a way that all the momentum exchanged goes to the quark or to the antiquark
- The ratio $\phi_{A}^{(3)}(\vec{k}_{2\perp}|\vec{k}_{\perp})/\phi_{A}(\vec{k}_{2\perp})$ should be close to the sum of two delta functions for factorization to be approximately valid

3-point correlator

cea

• 3-point function/2-point function (in the MV model):

 $\phi^{(3)}(k_{2\perp}|k_{\perp}) / \phi(k_{2\perp})$ for $Q_s^2 = 2 \text{ GeV}^2$

Factorization violation for b quarks

• Single *b*-quark cross-section :

exact / k_{\perp} -factorized (m = 4.5 GeV)

Factorization violation for c quarks

• Single *c*-quark cross-section :

exact / k_{\perp} -factorized (m = 1.5 GeV)

O Gluon saturation at small x

Heavy quark production

Kinematics QQbar cross-section Large Nc limit Violations of Kt-factorization General trends

Cronin effect for quark production

• MV model ($Q_s^2 = 4 \text{ GeV}^2$)

 $Q_s^2 = 4 \text{ GeV}^2$

Cronin effect for quark production

• Non-local gaussian model that mimics BK evolution

 $Q_{s}^{2} = 4 \text{ GeV}^{2}$

Cronin effect for pair production

• MV model ($m = 1.5 \text{ GeV}, Q_s^2 = 4 \text{ GeV}^2$)

JPsi in the Color Evaporation Model

François Gelis

Padova, December 2014

Rapidity dependence

- No rapidity dependence in the MV model
- The *Y* dependence comes in via the JIMWLK evolution, or in an approximated way via the Balitsky-Kovchegov equation
- Take the MV model with $Q_s^2 = 2 \text{ GeV}^2$ as the initial condition at $x_0 = 0.01$
- Compute $\langle U(0)U^{\dagger}(\vec{\textbf{x}}_{\perp}) \rangle_{v}$ by solving the BK equation
- For the 3- and 4-point functions, use the fact that in the large *N_c* limit they factorize into products of 2-point functions

Rapidity dependence

• $R_{\rm pA}$ for pairs at the LHC : $\sqrt{s}_{\rm NN} = 8.5 \, {\rm TeV}$

François Gelis

More realistic computations

Fujii, Watanabe (2013)

• D₀ meson yield in pp collisions @ LHC :

(b) $\sqrt{s} = 7 \text{ TeV}$, |y| < 0.5

More realistic computations

Fujii, Watanabe (2013)

• $D_0 - \overline{D_0}$ azimuthal correlation in pA :

More realistic computations

Fujii, Watanabe (2013)

• p_{\perp} -dependence of R_{pA} :

More realistic computations

Fujii, Watanabe (2013)

• *y*-dependence of R_{pA} :

Summary

- Gluon saturation enhanced in nuclei; reached earlier than in nucleons
- Saturation breaks the standard forms of factorization (DGLAP, kt-factorization)
 - > apparent non universality of parton distributions
- In the saturated non-linear regime, there exist generalized universal distributions *W*[ρ] that describe the dense projectiles both in DIS, pA and AA collisions
- In pA collisions, forward production (in the proton direction) may be treated by an hybrid factorization scheme where the CGC description is applied only to the nucleus
- Competition between multiple scatterings (Cronin effect) and suppression due to shadowing. Invariant mass increased by rescatterings; reduces the JPsi yield.
- BUT : hadronization not treated in a very satisfactory way...

François Gelis