

Javier Castillo Irfu – CEA Saclay

- (Short) Introduction
- Charmonia in p-Pb collisions
- Bottomonia in p-Pb collisions
- Summary

- (Short) Introduction
- Charmonia in p-Pb collisions
- Bottomonia in p-Pb collisions
- Summary

 Event activity results in Davide's talk!

Quarkonia

- In Pb-Pb collisions quarkonium production is affected by the QGP and by Cold Nuclear Matter (CNM) effects
- p-A collisions used to study CNM effects in the absence of a hot medium
- Main effects
 - Modification of the Parton Distribution Functions in the nuclei with respect to free nucleons
 - "gluon Shadowing"
 - Saturation via Colour Glass Condensate (CGC)
 - Coherent parton energy loss
 - Nuclear absorption
 - Expected to be negligible at LHC energies
- J/ ψ and Υ in p-Pb collisions are complementary
 - Different mass
 - Different kinematics range (Bjorken-x) probed

ALICE – CMS – LHCb

- ALICE
 - -4.46 < y < -2.96 (μμ, Pb-going)
 - --1.37 < y < 0.43 (ee)
 - 2.03 < y < 3.53 (μμ, p-going)</p>

• CMS - -1.93 < y < 1.93 (µµ)

LHCb
-5.00 < y < -2.50 (μμ, Pb-going)
1.50 < y < 4.00 (μμ, p-going)

J/ψ in ALICE

Sapore Gravis Workshop Padova, 9-12 December 2014

J/ψ in LHCb

 Prompt and non-prompt separation using simultaneous fit of invariant mas and pseudo-proper decay time distributions

Inclusive Y

ALICE-PUBLIC-2013-002 – LHCb-CONF-2013-013

- Inclusive J/ψ
- Good agreement between ALICE and LHCb results

Prompt and Non-prompt J/ψ production cross section

JHEP 02 (2014) 072

• Non-prompt J/ ψ are about 10% of Prompt J/ ψ

- CNM effects evaluated via the nuclear modification factor R_{pPb}
- Need pp reference at same $\sqrt{s_{\text{NN}}}$
- Joint effort by the ALICE and LHCb collaborations
- Energy interpolation at forward rapidity
 - J/ψ [ALICE-PUBLIC-2013-002] [LHCb-CONF-2013-013]
 - using either ALICE data at 2.76 and 7 TeV or LHCb data at 2.76, 7 and 8 TeV
 - and several "reasonable" functional forms
 - but also pQCD FONLL calculations
 - rapidity extrapolation using gaussian, pol2 and pol4 functions (ALICE)
 - Y [ALICE-PUBLIC-2014-002] [LHCb-CONF-2014-003]
 - using LHCb data at 2.76, 7 and 8 TeV
 - and several "reasonable" functional forms
 - but also pQCD FONLL calculations
- More details in Martino's talk, 11/12/14 @ 9 am

ALICE-PUBLIC-2013-002 – LHCb-CONF-2013-013 ALICE-PUBLIC-2014-002 – LHCb-CONF-2014-003

J/ψ nuclear modification factor R_{pPb}

ALI-DER-60379

- Good agreement between ALICE and LHCb
- Strong suppression at forward rapidity
- Similar suppression a mid- than at forward rapidity
- A backward rapidity the R_{pPb} is compatible with unity

Model comparison –

- Vogt [arXiv:1301.3395]
 - CEM production model at NLO
 - EPS09 shadowing parameterization at NLO
 - Fair agreement with measured R_{pPb} within uncertainties
 - Tendency to underestimate suppression at forward rapidity

- Arleo et al. [JHEP 1303 (2013) 122]
 - Model including a contribution from coherent parton energy loss
 - With or without shadowing (EPS09)
 - Fair agreement in both cases over the full yrange
 - Tension at backward rapidity?

- Ferreiro et al. [PRC 88, (2013) 047901]
 - Generic 2 \rightarrow 2 production model at LO
 - EPS09 shadowing parameterization at LO
 - Fair agreement with measured R_{pPb}
 - Here, effect of nuclear absorption highlighted, large σ_{abs} disfavoured

JHEP 02 (2014) 072

- R_{pPb} of prompt and non-prompt J/ ψ
 - Conclusions unchanged

- Vogt [arXiv:1301.3395]
- Arleo et al. [JHEP 1303 (2013) 122]
- Ferreiro et al. [PRC 88, (2013) 047901]
 - Here, effect of different nPDF tested

JHEP 02 (2014) 072

- R_{pPb} of prompt and non-prompt J/ ψ
 - Conclusions unchanged

- Vogt [arXiv:1301.3395]
- Arleo et al. [JHEP 1303 (2013) 122]
- Ferreiro et al. [PRC 88, (2013) 047901]
 - Here, effect of different nPDF tested

Transverse momentum dependence

- Strong suppression at mid and forward rapidity
 - Increases with p_T , compatible with unity for $p_T \gtrsim 5$ GeV/c
- No suppression at backward rapidity
 - Small p_T dependence, compatible with unity

- Shadowing only model (calculation for $p_T > 2.5$ GeV/c) describes trend of data but underestimates suppression at forward rapidity and 2.5 < $p_T < 3$ GeV/c (and below ?)
- Coherent energy loss only does not describe the measured trends
- Coherent energy loss with shadowing describes data at high p_T but overestimates suppression at forward rapidity and low p_T
- CGC overestimates suppression at forward rapidity

e.g. arXiv:1404.1615

CNM from p-Pb to Pb-Pb

- e.g. arXiv:1404.1615 • The poor's man approach: $AA = pA \times Ap$
- Assumptions:
 - Production mechanism: g+g \rightarrow J/ $\!\psi$
 - CNM effects factorize in p-nucleus and are dominated by shadowing

- Strong suppression at high p_{T} due to the hot medium
- Increase of $S_{J/\psi}$ at low p_T (observation that favours (re)combination scenario in Pb-Pb)

CNM from p-Pb to Pb-Pb

ψ(2S) suppression in p-Pb

- Stronger $\psi(2S)$ suppression than $J/\psi!$
- Similar observation at RHIC
- Models including shadowing or energy loss or both describe J/ ψ R_{pPb} but underestimate the ψ (2S) suppression
 - Similar prediction for both states
- Break-up effects are unlikely to describe the difference
 - formation time $\tau_{\rm f} \gtrsim \tau_{\rm c}$ crossing time
- Other final state effects are required to describe the stronger $\psi(2S)$ suppression

Comover Interaction

arXiv:1405.3796

- E. Ferreiro [arXiv:1411.0549]
 - Charmonium dissociation by comover interaction
 - EPS09 shadowing parameterization at LO
 - Good description of J/ ψ and ψ (2S) R_{pPb} at both backward and forward rapidity

- Not seen (yet) at forward or backward rapidity by ALICE nor LHCb
 - p-Pb Y(2S)-to-Y(1S) cross section ratio
 - $-4.46 < y_{cms} < -2.96$: $0.26 \pm 0.09 \pm 0.04$ (ALICE) $-5.00 < y_{cms} < -2.50$: $0.28 \pm 0.14 \pm 0.04$ (LHCb)
 - $2.03 < y_{cms} < 3.53$: $0.27 \pm 0.08 \pm 0.04$ (ALICE) $1.50 < y_{cms} < 4.00$: $0.20 \pm 0.05 \pm 0.01$ (LHCb)

- Similar values measured in pp collisions by ALICE (2.5 < y < 4.0) and LHCb (2.0 < y < 4.5)
 - ALICE 7 TeV: 0.28 ± 0.08
 - LHCb 2.76 TeV: 0.24 ± 0.03
 - LHCb 7 TeV: 0.25 ± 0.02
 - LHCb 8 TeV: 0.23 ± 0.01

- Not seen (yet) at forward or backward rapidity by ALICE nor LHCb
 - p-Pb Y(2S)-to-Y(1S) cross section ratio
 - $-4.46 < y_{cms} < -2.96$: $0.26 \pm 0.09 \pm 0.04$ (ALICE) $-5.00 < y_{cms} < -2.50$: $0.28 \pm 0.14 \pm 0.04$ (LHCb)

 - $2.03 < y_{cms} < 3.53$: $0.27 \pm 0.08 \pm 0.04$ (ALICE) $1.50 < y_{cms} < 4.00$: $0.20 \pm 0.05 \pm 0.01$ (LHCb)

- Similar values measured in pp collisions by ALICE (2.5 < y < 4.0) and LHCb (2.0 < y < 4.5)
 - ALICE 7 TeV: 0.28 ± 0.08
 - LHCb 2.76 TeV: 0.24 ± 0.03
 - LHCb 7 TeV: 0.25 ± 0.02
 - LHCb 8 TeV: 0.23 ± 0.01

Y nuclear modification factor in p-Pb

pPb @ 5.02 TeV

PLB 740 (2015) 105

Uncertainties:

- Bars: Statistical
- Open boxes: Systematic

- Assuming a $2\rightarrow 1$ production process the tested Bjorken-*x* ranges are
 - Backward: $3.6 \cdot 10^{-2} < x < 1.6 \cdot 10^{-1}$ (antishadowing region)
 - Forward: $5.5 \cdot 10^{-5} < x < 2.5 \cdot 10^{-4}$ (shadowing region)

Y nuclear modification factor in p-Pb

pPb @ 5.02 TeV

• Inclusive Y(1S) R_{pPb}

PLB 740 (2015) 105

Uncertainties:

- Bars: Statistical
- Open boxes: Systematic

- Assuming a $2\rightarrow 1$ production process the tested Bjorken-*x* ranges are
 - Backward: $3.6 \cdot 10^{-2} < x < 1.6 \cdot 10^{-1}$ (antishadowing region)
 - Forward: $5.5 \cdot 10^{-5} < x < 2.5 \cdot 10^{-4}$ (shadowing region)

Comparison with J/ψ

pPb @ 5.02 TeV

- Comparison with ALICE J/ψ R_{pPb}
 - Forward: similar suppression
 - Backward: slightly lower Y R_{pPb} , but compatible within uncertainties

- Assuming a $2\rightarrow 1$ production process the tested Bjorken-*x* ranges are
 - Backward: $3.6 \cdot 10^{-2} < x < 1.6 \cdot 10^{-1}$ (Y) and $1.2 \cdot 10^{-2} < x < 5.3 \cdot 10^{-2}$ (J/ ψ)
 - Forward: $5.5 \cdot 10^{-5} < x < 2.5 \cdot 10^{-4}$ (Y) and $1.8 \cdot 10^{-5} < x < 8.1 \cdot 10^{-5}$ (J/ ψ)

PLB 740 (2015) 105 JHEP 02 (2014) 073

ALICE-PUBLIC-2014-002 – LHCb-CONF-2014-003

- Comparison with LHCb Y R_{pPb}
 - Both measurements are compatible
 - Systematically higher for LHCb than ALICE

Model comparisons – I

PLB 740 (2015) 105

- Generic $2 \rightarrow 2$ production model at LO
- EPS09 shadowing parameterization at LO
- Fair agreement with measured R_{pPb}
 - Although slightly overestimates it in the antishadowing region

- Vogt [arXiv:1301.3395]
 - CEM production model at NLO
 - EPS09 shadowing parameterization at NLO
 - Fair agreement with measured $R_{\rm pPb}$ within uncertainties
 - Although slightly overestimates it

Model comparisons – II

PLB 740 (2015) 105

- Arleo et al. [JHEP 1303 (2013) 122]
 - Model including a contribution from coherent parton energy loss
 - With or without shadowing (EPS09)
 - Forward: Better agreement with ELoss and shadowing
 - Backward: Better agreement with ELoss only

Model comparison – III

Summary

- The production of J/ ψ in p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV shows
 - A strong suppression of J/ψ at forward rapidity
 - Suppression decreases with increasing $\ensuremath{p_{\text{T}}}$
 - A similar measurement at forward rapidity
 - $-AR_{pPb}$ consistent with unity at backward rapidity
 - Above unity for $p_T > 4 \text{ GeV/c}$
- The production of inclusive Y(1S) in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shows
 - A suppression of $\Upsilon(1S)$ at forward rapidity (small-x region)
 - Similar R_{pPb} as for J/ ψ
 - $-AR_{pPb}$ consistent with unity at backward rapidity (large-x region)
 - Model comparisons suggest smaller anti-shadowing than assumed
- Excited states are more suppressed than ground states
 - $-\,\psi(2S)\,R_{\text{pPb}}$ is well described by comovers approach
 - what about Y(2S)?

- LHC Run2 is about to start ...
- What can be improved from the experimental side
 - LHCb will increase their stat. in Run2
 - better J/ ψ and Y(1S) measurement
 - significant $\psi(2S)$ and Y(2S) measurement
 - larger y coverage
 - ALICE will increase their stat. in Run2
 - better $\psi(2S)$ and Y family measurements
 - Eventually CMS will join the game (with more than double ratios)
 - broad y coverage for Y family RpPb
 - Measured pp reference is a must!
 - \bullet will improve all quarkonium R_{pPb} measurements
- What we need from theory
 - Interaction with comovers explain the $\psi(2S)$ results, what about Y(2S)?
 - Many statistically significant results are out there, can't we start considering them to constrain the models?
 - For some of us the goal is to extrapolate to Pb-Pb, let's get to the task!
- The question is still open, should LHC run their p-Pb collisions at 5 or 8 TeV?

Back-up

pPb @ 5.02 TeV

- Rapidity integrated cross sections
 - $-\sigma_{Y(1S)}(-4.46 < y_{cms} < -2.96) = 5.57 \pm 0.72(stat) \pm 0.60(syst) \ \mu b;$
 - $-\sigma_{Y(1S)}(2.03 < y_{cms} < 3.53) = 8.45 \pm 0.94(stat) \pm 0.77(syst) \ \mu b.$
 - $-\sigma_{Y(2S)}(-4.46 < y_{cms} < -2.96) = 1.85 \pm 0.61(stat) \pm 0.32(syst) \ \mu b$,
 - $-\sigma_{Y(2S)}(2.03 < y_{cms} < 3.53) = 2.97 \pm 0.82(stat) \pm 0.50(syst) \ \mu b.$

No evidence of different CNM effects on Y(2S) than on Y(1S)

- LHCb 8 TeV: 0.23 ± 0.01

Forward to Backward ratio

pPb @ 5.02 TeV

- Ratio of the Forward to Backward yields
 - Pros: No need of pp reference
 - Cons: Rapidity acceptance restricted to common region $2.96 < |y_{cms}| < 3.53$

- All models are in agreement with our measurement within uncertainties

PLB 738 (2014) 361

