Overview on diffraction a theorist's perspective

Roman Pasechnik Lund U.

Contents

- ✓ Definition and challenges of diffractive processes: "Mind the gap!"
- ✓ Historical outlook: The Pomeron
- ✓ Theoretical status and issues of hard diffraction: Are we satisfied?
 - ★ Diffractive factorisation concept
 - ★ Durham approach
 - ★ Color Dipole approach
 - ★ Soft Color Screening approach
- ✓ (Some) existing data on diffraction: What do we (want to) learn?
 - ★ HERA
 - ★ Tevatron
 - ★ LHC
- **√** Summary

Definition of diffraction

Analogy with optical diffraction

Hadronic diffraction is the shadow of absorption into inelastic channels

Challenges: theory vs experiment

✓ The definition of diffraction is not unique

- ★ fluctuations during the hadronisation process (protons from recombination? gap size?)
- \star low vs high mass diffractive dissociation
- ★ soft vs hard Pomeron
- \bigstar hard-soft factorisation breaking, etc

huge sensitivity to details!

- interpreted in QCD as a >two gluon exchange
- not a simple pole but enigmatic non-local object

Good-Walker formulation

R. J. Glauber, Phys. Rev. 100, 242 (1955). E. Feinberg and I. Ya. Pomeranchuk, Nuovo. Cimento. Suppl. 3 (1956) 652. M. L. Good and W. D. Walker, Phys. Rev. 120 (1960) 1857.

Projectile has a substructure!

Diffractive excitation determined by the fluctuations

Hadron cannot be excited: not an eigenstate of interaction!

Completeness and orthogonality

$$\begin{aligned} \langle h'|h\rangle &= \sum_{\alpha=1} (C^{h'}_{\alpha})^* C^h_{\alpha} = \delta_{hh'} \\ \langle \beta|\alpha\rangle &= \sum_{h'} (C^{h'}_{\beta})^* C^{h'}_{\alpha} = \delta_{\alpha\beta} \end{aligned}$$

Elastic and single diffractive amplitudes

$$f_{el}^{h \to h} = \sum_{\alpha=1}^{h \to h} |C_{\alpha}^{h}|^{2} f_{\alpha}$$
$$f_{sd}^{h \to h'} = \sum_{\alpha=1}^{h \to h'} (C_{\alpha}^{h'})^{*} C_{\alpha}^{h} f_{\alpha}$$

Single diffractive cross section

Important basis for the dipole pict

$$|h\rangle = \sum_{lpha=1} C^h_{lpha} |lpha
angle \qquad \hat{f}_{el} |lpha
angle = f_{lpha} |lpha
angle$$

semi-hard/ semi-soft

 $\left|\sigma_{tot} = \sum_{\alpha = soft}^{nard} |C_{\alpha}|^2 \sigma_{\alpha} \left| \overline{\sigma_{sd}} = \sum_{\alpha = soft}^{hard} |C_{\alpha}|^2 \sigma_{\alpha}^2 \right| \right|$ $|C_{\alpha}|^2$ σ_{α} Hard $\sim 1 \sim \frac{1}{O^2}$ $\sim \frac{1}{O^2}$ $\sim \frac{1}{O^4}$ Soft $\sim \frac{m_q^2}{O^2}$ $\sim \frac{1}{m_a^2}$ $\sim \frac{1}{O^2}$

$$\frac{d\sigma_{sd}^{h \to h'}}{dt}\Big|_{t=0} = \frac{1}{4\pi} \left[\sum_{h'} |f_{sd}^{hh'}|^2 - |f_{el}^{hh}|^2 \right]$$

$$= \frac{1}{4\pi} \left[\sum_{\alpha} |C_{\alpha}^{h}|^2 |f_{\alpha}|^2 - \left(\sum_{\alpha} |C_{\alpha}^{h}| f_{\alpha} \right)^2 \right] = \left[\frac{\langle f_{\alpha}^2 \rangle - \langle f_{\alpha} \rangle^2}{4\pi} \right]$$
Example 1

envalues bution 4π

Unitarity corrections

Birth of hard diffraction: QCD modelling of Pomer

Diffraction at HERA

Diffractive DIS

Single diffractive pp cross section at high energies

Tevatron $\frac{\sigma(\text{hard diffraction})}{\sigma(\text{hard})} \sim 1\% \ll 10\% \sim \frac{\sigma(\text{diffractive DIS})}{\sigma(\text{DIS})}$ **Non-universality!** $q_{I\!\!P}(x,Q^2)$ and $g_{I\!\!P}(x,Q^2)$ fitted to DIS F_2^D factor 10-100 too large diffractive cross section at Tevatron! **Rockefeller Model (by K Coulianos)** interpret flux as gap $f_{I\!\!P/p}(\xi,t) \Rightarrow N_s^{-1} \cdot f_{I\!\!P/p}(\xi,t)$ formation probability $N_s \equiv \int_{\xi(min)}^{\xi(max)} d\xi \int_{t=0}^{-\infty} dt f_{I\!\!P/p}(\xi, t) \sim s^{2\epsilon}$ that saturates when it reaches unity (mb GeV⁻⁴) factorisation is broken std. and renorm. GeV $(0.01 < \xi < 0.03)$ by gap survival effects! flux fits GeV (0.01 < ξ < 0.03) □ 20 ▲ 546 GeV $(0.005 < \xi < 0.03)$ O 1800 GeV (0.003 < ξ < 0.03)</p> d²σ∕dtdM² |_{t = -0.05} 10 $\frac{1}{(M^2)^{1+\Delta}}$ Factor of $\sim 8 (\sim 5)$ 10^2 suppression at $\Delta = 0.05$ 546 GeV std. √s = 1800 (540) GeV $\Delta = 0.15$ flux prediction 10 1800 GeV std. flux prediction Pythia 8-MBR renorm. flux 10 prediction implementation 10 10^{2} 10^{3} 10⁵ 104 10^{6} 10 13 M^2 (GeV²)

HERA

Diffractive cross sections at the LHC

CMS Coll, CMS PAS FSQ-12-005

Soft vs hard Pomeron: KMR'14 model

Phenomenological dipole approach

Eigenvalue of the total cross section is the universal dipole cross section

Dipole:

- cannot be excited
- experience only elastic scattering
- have no definite mass, but only separation
- universal elastic amplitude can be extracted in one process and used in another

SD cross section

total DIS cross section

see e.g. B. Kopeliovich et al, since 1981

Eigenstates of interaction in QCD: color dipoles

$$\sum_{h'} \frac{d\sigma_{sd}^{h \to h'}}{dt} \bigg|_{t=0} = \sum_{\alpha=1} |C_{\alpha}^{h}|^{2} \frac{\sigma_{\alpha}^{2}}{16\pi} = \int d^{2}r_{T} (|\Psi_{h}(r_{T})|^{2}) \frac{\sigma^{2}(r_{T})}{16\pi} = \frac{\langle \sigma^{2}(r_{T}) \rangle}{16\pi}$$

wave function of a given Fock state

$$\sigma_{tot}^{\gamma^* p}(Q^2, x_{Bj}) = \int d^2 r_T \int_0^1 dx \left| \Psi_{\gamma^*}(r_T, Q^2) \right|^2 \sigma_{\bar{q}q}(r_T, x_{Bj})$$

Theoretical calculation of the dipole CS is a challenge

BUT! Can be extracted from data and used in ANY process!

Example: Naive GBW parameterization of HERA data

color transparency

QCD factorisation

 $\boldsymbol{\sigma}_{\bar{q}q}(r_T, \boldsymbol{x}) = \boldsymbol{\sigma}_0 \left[1 - e^{-\frac{1}{4}r_T^2 \mathcal{Q}_s^2(\boldsymbol{x})} \right]$

saturates at large separations

$$r_T^2 \gg 1/Q_s^2$$

$$egin{aligned} &\sigma_{ar{q}q}(r_T) &\propto r_T^2 & r_T
ightarrow 0 \ &\sigma_{qar{q}}(r,x) \propto r^2 x g(x) \end{aligned}$$

A point-like colorless object does not interact with external color field!

ANY diffractive scattering is due to a destructive interference of dipole scatterings!

Hadronic diffraction via dipoles

interplay between hard and soft fluctuations is pronounced!

superposition has a Good-Walker structure

$$\propto \sigma(\vec{R}) - \sigma(\vec{R} - \alpha \vec{r}) = \frac{2\alpha \sigma_0}{R_0^2(x_2)} e^{-R^2/R_0^2(x_2)} \left(\vec{r} \cdot \vec{R}\right) + O(r^2)$$

Diffractive DIS $\propto r^4 \propto 1/M^4\,$ vs diffractive DY $\propto r^2 \propto 1/M^2\,$

- ★ diffractive factorisation is automatically broken
- ★ any SD reaction is a superposition of dipole amplitudes
- ★ gap survival is automatically included at the amplitude level on the same footing as dip. CS
- ★ works for a variety of data in terms of universal dip. CS

Sophisticated dipole cascades are being put into MC: Lund Dipole Chain model (DIPSY) Ref. G. Gustafson, and L. Lönnblad

QCD structure of Pomeron: the role of color/hadronisation

- *I*^P model fitted to HERA data
 → fails for Tevatron data
 σ(hard diffr) factor 6–100 too large
 → need 'damping' at high energies,
 e.g. I^P flux 'renormalisation'
- *IP* flux & structure not universal ill-defined for virtual *IP*
- Factorisation broken in diffractive $p\bar{p}$ coherent interactions
- Improper with IP 'emitted' from p soft, long space-time-scale interaction → IP-p cross-talk

Alternative approach:

- no 'initial' $I\!\!P$, not in proton wave fcn
- hard pQCD left unchanged
 not affect by soft interactions
- non-pQCD below $Q_0^2 \sim 1~{\rm GeV^2}$
- $\alpha_s \text{ large} \Rightarrow \text{ large interaction probability}$ e.g. unity for hadronisation!
- colour exchange modifies colour/string topology \rightarrow different final state
- single model describing all final states
 diffractive ↔ nondiffractive

see G. Ingelman et al

Sensitivity to the color string topology fluctuations

DynSCI Monte Carlo vs diffractive DIS

Werder, Ingelman, RP

Dynamical color screening: Generalised Area Law model

Rathsman'99

dynamical string rearrangement

Area spanned by a string in momentum space

$$A(p_i, p_j) = 2(p_i \cdot p_j - m_i \cdot m_j)$$

Area difference between two string configurations

 $\Delta A = A^{\rm old} - A^{\rm new}$

GAL has been successfully applied to inclusive and diffractive DIS Motion of quarks and antiquarks in a $q\overline{q}$ system:

(D) System is centrally (D) Hite production in *m* collisions is a pr Mile production in *m* collisions is a pr Mile and production in the set of the set ont intact parton level system is centrally if the set DPE), a difficult on the process implemented in Ex A state of the set of the set

 $\vec{r}_{i} + \vec{x}_{i}$

р

EDS2013 CONTRACTOR ON LY THE 0.03 < FIG. 10-1

process is a congriess object of the effective spin tribute bigger and the process of the effective spin

Eur.Phys.J. C73 (2013) 2503

<u>channel pertoursigned and another company supplies the Calder</u>

23

More exclusive/diffractive reactions...

Laboratory of quarkonia, meson pair, exotics, gauge bosons, New Physics... production

EXCLUSIVE Dijet -> Excl. Higgs <u>THEORY CALIBRATION</u>

PRD 77, 052004 (2008)

Saturation studies via concrement unit acuon

Forward Physics Monte Carlo (FPMC project)

- FPMC (Forward Physics Monte Carlo): implementation of all diffractive/photon induced processes
- List of processes
 - two-photon exchange
- single diffraction
- double pomeron exchange
- central exclusive production
- Inclusive diffraction: Use of diffractive PDFs measured at HERA, with a survival probability of 0.03 applied for LHC
- Central exclusive production: Higgs, jets...
- FPMC manual (see M. Boonekamp, A. Dechambre, O. Kepka, V. Juranek, C. Royon, R. Staszewski, M. Rangel, ArXiv:1102.2531)
- Survival probability: 0.1 for Tevatron (jet production), 0.03 for LHC, 0.9 for γ -induced processes
- Output of FPMC generator interfaced with the fast simulation of the ATLAS detector in the standalone ATLFast++ package and also to the full simulation including pile up

diffractive factorisation + gap survival!

Durham-based model

with variations

Search for New Physics with exclusive processes: examples

Summary: Diffraction as a QCD laboratory

- ✓ Definition of diffraction is not unique but understood
- ✓ We have seen the Pomeron at work both in soft and hard regimes, as well as in the transition region — marginal agreement with data is achieved despite large uncertainties
- ✓ Matching between "soft" DL and "hard" BFKL Pomerons is a big challenge, but there is a progress
- Many theoretical developments in QCD-ish modelling of soft/hard Pomeron
- ✓ Diffraction is highly sensitive to small-x/long distance and multiple exchange physics
- Such effects as Regge/diffractive factorisation breaking, fluctuations in hadronisation, color screening need a proper universal treatment
- ✓ Further MC development/improvements and measurements are required
- Exclusive diffraction opens up new opportunities for New Physics searches due to reduced backgrounds

As long as QCD dynamics not understood, diffraction continues to be interesting