Bottomonia in AA at the LHC

(a heavy questioning talk on an unquestionably heavy subject)

Camelia Mironov LLR/Ecole polytechnique

Y(1S, 2S, 3S) in AA at the LHC

- Y(1S): 0.56 ± 0.11 (stat+systm)
- Y(2S): 0.12 \pm 0.04 \pm 0.02
- Y(3S): < 0.1 at 95% CL

- \bullet ALICE: -2.5<y<-4, p_T>0, 0-100%
 - Y(1S): 0.30 ± 0.06 (stat+systm)

Summary

- \bigcirc CMS: $R_{AA}^{Y(3S)} < R_{AA}^{Y(2S)} < R_{AA}^{Y(1S)}$
 - order → thermometer-ish
 - still missing theory input on scale: 300-700MeV for 1S is rather large, not very useful, range ...
 - \implies assuming feed-down to 1S of ~40-50% (CDF and LHCb) \rightarrow 1S is ~ not modified
- **ALICE:** strong y-dependence
 - \implies theory 'predicted' CNM (e.g. nPDF) & the HOT recombination for $\Upsilon(1S)$ ~ negligible
 - re-predict soon...(until then, this qualifies as an experimental discrepancy)
 - !!!! caveat: pp reference is measured/provided by LHCb
 - I shall not panic until the result is updated with ALICE measured reference (2016?...)

 $1/\langle r \rangle$ [fm⁻¹]

 $\Upsilon(15)$

 $\chi_b(1P)$

A. Mocsy

Eur.Phys.J.C61,2008

Back-up

Think 3D

- 1) Different in size, binding energy
 - Debye screening to affect states ... sequentially
- (a) Relatively close cross-section x branching ratios, close in mass
 - initial effects should be <u>similar</u>
 - can test this in pA
- (and largely unknown) feed-down contributions
 - have to be settled in pp

- (a) Basic, unmodified production mechanism not fully understood
 - have to be settled in pp

Missing something ...?

- 1) Different in size, binding energy (and formation time)
 - final effects (after hard-scattering) on each state expected to be different
- 2) Relatively close cross-section x branching ratios, close in mass
 - initial effects (before the hard-scattering that produced the bb) should be similar
 - can test this in pA
- 3) Different (and largely unknown) feed-down contributions
 - have to be settled in pp

- (a) Basic, unmodified production mechanism not fully understood
 - have to be settled in pp

4) p+p: Theory vs Data Y(1S)

- \bigcirc We thought it is easy to calculate $\Upsilon(1S)$ (higher mass, higher scales, etc)...
 - it might be easyER, but doesn't look we have mastered the craft yet
- Implication for pA & AA: life painfully difficult when no reference at same energy!!

4) p+p: Data vs Data

- All onia states seem to be dominantly produced via one process
 - for p_T/M>3: same scaling for all 7 onia (~10GeV/c for J/ ψ and ~30GeV/c for Y)
 - \longrightarrow S-wave onia polarization \sim between charmonia and bottomonia, independent of p_T , y,
- Implication for AA, where (pair of) quarks & gluons couple different w/ medium
 - a constrain for the theoretical models that include energy loss, azimuthal asymmetries, etc.

- 1) Different in size, binding energy (and formation time)
 - final effects (after hard-scattering) on each state expected to be different
- 2) Relatively close cross-section x branching ratios, close in mass
 - initial effects (before the hard-scattering that produced the bb) should be similar
 - can test this in pA

- (and largely unknown) feed-down contributions
 - have to be settled in pp

- (a) Basic, unmodified production mechanism not fully understood
 - have to be settled in pp

3) p+p: Data vs Data

- For ~14 years: feed-down for $\Upsilon(1S)$ is ~50% at high-p_T
- \bigcirc 2014 news: more like 25-30% from feed-down at p_T~7GeV/c

3) A+A: Data vs Data

Implication for AA (&pA) (assuming the Debye screening picture is valid)

- \rightarrow Y(1S) might've 'melt' after all ... at LHC (~0.4 in 0-10%) but much less (if at all) at RHIC
- ightharpoonup $T_{RHIC(\sim 220 MeV)} < T_{LHC(\sim 300 MeV)}$ from thermal photons; medium much hotter though!
- $T0_{RHIC} < T_{screening}(\Upsilon(1S)) < T0_{LHC}$

Bottomonia not a precise thermometer

but a rather unique judge the 'realistic-ness' of models: range 300-700 MeV ...

- 1) Different in size, binding energy (and formation time)
 - final effects (after hard-scattering) on each state expected to be different
- (a) Relatively close cross-section x branching ratios, close in mass
 - initial effects (before the hard-scattering that produced the bb) should be similar
 - can test this in pA

- 3) Different (and largely unknown) feed-down contributions
 - have to be settled in pp

- (a) Basic, unmodified production mechanism not fully understood
 - have to be settled in pp

2) Final effects in pA

- pPb vs PbPb: larger double ratios in pPb (though need extrapolation from 1->2 Pb)
 - additional (and/or stronger) <u>final effects</u> in PbPb affecting more the excited states
- pPb vs pp:
 - \rightarrow pPb <u>final effects</u> on the excited states suppress them w.r.t. the ground state (<3 σ)
 - → 3S is more affected than 2S (a.k.a. there is size-ordering also in pPb) ?

- 1) Different in size, binding energy (and formation time)
 - final effects (after hard-scattering) to affect states ... sequentially
- (a) Relatively close cross-section x branching ratios, close in mass
 - initial effects (before the hard-scattering that produced the bb) should be similar
 - can test this in pA
- 3) Different (and largely unknown) feed-down contributions
 - have to be settled in pp

- (a) Basic, unmodified production mechanism not fully understood
 - have to be settled in pp

1) Size and binding energy

 $r_0,\Delta E$ \overline{Q}

Y(2S)

Y(1S)

Y(3S)

- If it's just binding en & size that matter, other processes can destroy 'sequentially'
 - **excited** states:
 - larger': easier to be 'found' even in more diluted environments;
 - tformation ~ $1/\Delta E$: longer time to form \rightarrow longer in 'proto-state' (more chances to be four
 - weaker bound:
 - easier to break once 'found' (by co-moving partons or hadrons)
 - but also easier to re-combine
 - need to consider also time/scales of the surrounding environment...
 - time to form, its lifetime and size are as important as its density
- Several phenomena affecting bottomonia x-section
 - → 2 able to destroy/melt the states: Debye screening and inelastic collisions
 - can we actually distinguish them? (more radically: does Debye screening actually exist?)
 - 1 that can put back some yield: recombination

1) Size and binding energy in pp

Evolution (w.r.t. minbias) of the individual x-sections with the increase of track multiplicity around the state

- Don't freak out: in p-p, indications of 'ordered' behaviour !!!
 - \rightarrow at ~3x<N_{tracks}>:

$$\frac{\Upsilon(3S)}{\langle \Upsilon(3S) \rangle} < \frac{\Upsilon(2S)}{\langle \Upsilon(2S) \rangle} < \frac{\Upsilon(1S)}{\langle \Upsilon(1S) \rangle}$$

1) Size and binding energy

- Can use "sequentiality" as proof of Debye screening/deconfined medium?
 - Nope! (for sure not by itself)
 - Just proof that size matters, hence it has to be considered by AA, pA and pp models!!!

Instead of conclusion ...

- 1) Debye screening
 2,3) Co-mover partonic/hadronic break-up?
 4) Recombination?

 1) Debye screening
 2,3 Co-mover partonic/hadronic break-up?
 4) Recombination?

 2,3 Co-mover partonic/hadronic break-up?
 5) Jet-like en loss
 pT [GeV/c]
- Interplay of final-state effects, each dominant in different kinematic regions.
 - some can be at work (with different strength) also in pp and pA (use to gauge size of effect)
 - data for p_T dependence (at least) to define the regions of 'dominance'
 - CMS will do this before Run 2, but for some things might need p_T>20GeV
- What I think data tell us so far (in the kinematic regions probed by CMS) ...
 - it's about final state effects!
 - **→** 1S
 - (pp &) pPb: unmodified in any significant way
 - PbPb (0-10%): modified not only by Debye screening, but also by collisional dissociation
 - \implies 2S and 3S
 - (pp high-multiplicity &) pPb: modified by *final state effects* (partonic/hadronic collisions)
 - PbPb (0-> \sim 60%): modified not only by Debye screening, but also by collisional dissociation

End

Quarkonium polarization measurements:

- polarizations of the S-wave quarkonia cluster around the unpolarized limit, with
 - no significant dependencies on p_T or rapidity
 - no strong changes from directly-produced states to those affected by P-wave feed-down decays
 - and no evident differences between charmonium and bottomonium
- At "zero-order": all quarkonia are dominantly produced by a single mechanism!

Onia in A+A: open vs closed

- $igoplus R_{AA}$ for D and J/ ψ similar
 - coincidence?
 - it's actually a parent gluon that looses an 'universal' energy before the mesons are formed?
- D has asymmetry from thermalized charm, OR from the light quark it combines with?

dominated by the path length dependence of en loss whose en loss?

Screening vs pT ...

