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Charm and beauty quarks
In heavy-ion collisions

K= epuD » Produced in partonic processes with
\/ LN large Q2 on short time scale
g / i = Production in QGP expected to be
° negligible

& pQCD can be used to calculate initial
Cross sections
o Traverse the “full evolution” of the
hot and dense medium

b quark & Lose energy via elastic collisions with
e— the_m_edium constituents and gluon
Phass (<) radiation

E = Flavour conserved in the interactions
with the QGP

& Excellent probes of the properties of the
medium: transport coefficients, energy
loss mechanism, collectivity,
thermalization)




Probing the medium properties

q: colour triplet y o HieraI’Chy eXpeCted due to COlOL_Ir'Char_ge
u.d,s: m-0, Wg} and quark-mass dependence of in-medium
parton energy loss:

g: colour octet
m=0, Cg=3

g:
Q: colour triplet _/ A E

c: m~1.5 GeV, C.=4/3
b: m~5GeV," Cz=4/3

> AE, 4 > AE, > AE,

gluon

o Reflected into: Rya(B) > Raa(D) > Rpa(m)?

‘QCD medium’

Interactions with the medium constituents

can transfer to charm and beauty quarks

the collective flow (radial and elliptic) of

the medium
= Large mass: frequent interactions with large Reaston

coupling needed

& Expectation: v,(B) < v,(D)
& Are re-scatterings with the medium strong

enough to make charm (and beauty) quarks
thermalize in the medium? 5
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Heavy flavour reconstruction
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What have we learned?
In-medium energy loss

. 0
¥ &R B 7" Rya

e + 0
— 8 eRap @ 1" Rap

(L PHENIX, PRL 109 (2012) 242301

» Strong suppression of HF yield
at intermediate and high p-

58 .!!-mla-mp.@.ﬁa - = Final state effect due to in-medium
energy loss (by comparing to d-Au

B ® g
= Elﬁmun\!mlmmlmmmmm andp-Pb)
NI EEEEI AN NS AN R NS SN RN laaaa by
0 1 2 3 4 5 &6 ? 8 9
p, [GeVrc] = RAA(H FE,D) = Rya(m)
(rrrryrrrrrrTrT T T T T T T T T T T T T T
- ALICE +°"’_§;9‘6iv;,~;f;gije"5 n:<1.4 CMS Prehmmary | | _:

16 Average D", D, D ] " PbPby\/syy = 2.76 TeV
Pb-Pb, | 5,,=2.76 TeV-

- T 12M[ CMS, PAS HIN-12-014

—e— centrality 0-20%

Nuclear modification factor

1-2:_ ] 1 A —o— centrality 40-80% —: 1I
o.af- M- o — 0'8_+ * Non-prompt J/y-
0.6 Jf ~_{’——T— - = 0.6 ]
ot 1 - * * ]
04 [l f —: 0.4 i * -
S EI n t ] - i
0.2 i C i
- LA ALICE, arXiv: 1405. 3452 0.2 |yl <2.4 E
! L ! *65<p < 30 GeV/ic ]
00 5 10 15 20 25 07\ L1 | | \ | | | ‘ L1 ‘ T .| | L 11 |7

p, (GeV/c) b 50400 150 200" 250" 300" 356 400
N

part



What have we learned?
Beauty vs. charm R, ,

D meson (ALICE) and J/y«B (CMS) R,, vs. centrality in p;
ranges tuned to have <p.(D)>= <p{(B)>=10-11 GeV/c
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T L Pb-Pb, |5y, =2.76 TeV » EXxpectation from parton-mass
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What have we learned?
Beauty jets at high p-

PPb Y5, = 5.02 TeV PbPb |5, = 2.76 TeV
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o R, Of b-jets found to be consistent with that of inclusive jets
(dominated by light quarks and gluons) at high p; (>80 GeV/c)
& Mass effect on parton energy loss expected to be small at large p+ 7



What have we learned?
FIOW/COIIectlwty

Positive eIIIptIC flow at RHIC and LHC~ 04__ ALCE | rorn, \Ismj_;emnlva_

& Comparable with charged patrticle v,

& Suggests that charm quarks take part in
the collective expansion of the system?

Elliptic flow at low p; also sensitive to:

& Interactions with medium constituents:

v’ Collisional more effective than radiative
processes in building v,

=& Hadronization mechanism:

v" Coalescence increases radial and elliptic

ois flow at intermediate p
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What have we learned?
Collectivity in small systems?
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Double-ridge structure observed in the angular correlations between HF
decay electrons and charged hadrons in p-Pb collisions

& Similar to the one observed in the light-flavour sector (@ ALICE, PLB719 (2013) 29 )

& ﬁuggests that the mechanism generating the double ridge is at work also for heavy
avours

v' CGCin initial state? 4 Dusling, Venugopalan, PRD87 (2013) 094034

v' Hydrodynamics in final state? Ed Bozek, Broniowski, PLB718 (2013) 1557
To be considered: collective flow in small systems (@ Sickles, arxiv:1309.6924)
would modify the HF hadron p; spectra in addition to nuclear modification
of PDFs, ky-broadening, cold-nuclear-matter energy loss 9



Few outstanding open questions

o

Charm vs. light quark energy loss

& Expectation AE; < AE, 4, ;< AE, vs. observation Rys(D) = Rya(m)
Charm hadrochemistry: D, and A,

& Sensitive to hadronization mechanism (coalescence vs. fragmentation)
Low-p; D-mesons: LHC vs. RHIC

& Interplay between radial flow, coalescence, shadowing and energy loss
Measurements at lower collision energy

= R,,>~1 measured at Vs=62.4 GeV

& Other handle to study the interplay between radial flow, coalescence, k-
broadening and energy loss

Path length dependence of energy loss
= Allow to constrain the contribution of collisional and radiative processes?

Beauty quark energy loss at low and intermediate p;
& Low p; (<10 GeV/c): mass effect on energy loss + radial flow?
& Intermediate p;: at which p; does R,,(b) become compatible with R,,(light)?

Elliptic flow of charm (and beauty) hadrons
= |Is v2 of D mesons and HFE due to charm quarks patrticipating in the collective flow?
& Or is it due to hadronization via coalescence with light quarks from the bulk?

Collectivity in small systems also in the HF sector?
& Or Colour Glass Condensate?

& Crucial to assess cold nuclear matter effects in the initial and final state 10



Raa

Charm vs. light
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Similar R,, of D mesons and pions both
at RHIC and LHC)

Described by models including
& Mass and colour charge dependent E loss

& Different momentum spectra of charm
quarks, light quarks and gluons

= Different fragmentation function (harder for
charm than for light quarks and gluons)
Djordjevic, Djordjevic, PRL112 (2014) 042302

Hint for R,A(D) > R() for p<5 GeV/c?

& More data needed to study the (small)
effect of c-quark mass at low p;

(9)



The strange frontier
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D.* results in Pb-Pb at low p; (<6 GeV/c) might hint at an increased
ratio D J/non-strange D in Pb-Pb collisions at \/s 2.76 TeV

More statistics needed to conclude on the predicted enhancement
of the strange/non-strange D meson yield at low/intermediate p+ if
charm hadronizes via recombination in the medium

Important also for the interpretation of Ry,(D) VS. RyA(7)

Kuznetsova, Rafelski, EPJ C 51 (2007) 113
He, Fries, Rapp, PRL 110 (2013) 112301 12



The baryon frontier
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Enhancement of baryon/meson ratios at intermediate p+ for light
flavour hadrons in central A-A collisions at RHIC and LHC
= Described by hadronization via parton-recobination and radial flow
At high p; the baryon/meson ratio is consistent with pp results
= Dominated by hard processes and hadronization via fragmentation
Is baryon/meson enhanced also in the HF sector?
= With larger data samples A, could become accessible at the LHC

Important also for the interpretation of Ry,(D) vS. Rya(7) 13



The low-p; frontier
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» At LHC energy: _—

& More shadowing, different effect of the radial flow 1o+t
on Ry, (less steep spectrum in pp) 5

= Some models (e.g. TAMU) describe both results 1o Spectra
‘normalized to unity \ '\

o Need more precise measurements at the LHC b b
down to p;= P
= More statistics + pp reference at same energy




The Iow—energy frontier

PHENIX, arXiv:1405.3301 ; o He Frles Rapp, arXiv:1409.4539
| Tt '=-=-=-Cronin only ' ]
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o 20-40%Central T - Au+Au, 62 AGeV, 20-40%

0 1 2 3 4 5 0.0 . 1 . ] R 1 . ] N ] . i
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P (GeV)
Yield of HF decay electrons at ¥s=62.4 GeV enhanced with
respect to binary scaled pp collisions
& Large uncertainties, pp reference from ISR experiments

Described by TAMU model as an interplay between different
effects:

= k. -broadening, radial flow, coalescence and in-medium energy loss

Important to: improve precision, pp reference from same
experiment, separate c and b

15



(GeVic

Electron

The beauty frontier

o Low p; region (<6 GeV/c) and intermediate p; (20-80 GeV/c)
to be explored

=~ HF delcay electrons, b-jets at lower p+, full reconstruction of B mesons?
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Collectivity and thermalization

[ ALICE, PRC90 (2014) 034904

[ Beraudo et al., arXiv:1410.6082
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» Positive HF v, observed at RHIC and LHC at low p+:
& Due to charm quarks participating in the collective flow?
= Or due to coalescence with a light quark from the bulk?

o More statistics at LHC energy could allow to:

& Constrain energy loss (collisional/radiative) and
hadronization (coalescence/fragmentation) mechanisms

& First measurement of beauty v,
S Iavrta pet? (Ed HpayAettog, ~500 b.C.)
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Elliptic flow at high p-

[ ALICE, PRC90 (2014) 034904
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» Current v, measurements at high p; not yet conclusive
& Positive v, at high p; due to in-medium energy loss

& Sensitive to path length dependence of parton in-medium energy loss
v’ Different dependence of the partonic energy loss on the in-medium path

length expected for collisional and radiative processes (linear vs. ~
guadratic)

» More statistics needed to constrain HF energy loss models

exploiting also high-p v,

5
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Data VS. Theory
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Simultaneous description of HF decay electron R,, and v, is

challenging for theoretical models

Data can start to constrain energy loss models

& E.g.: models that include collisional energy loss in an expanding medium +

coalescence better reproduce the measured v,
Next steps: more systematic comparisons data vs. theory + new

observables
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New observables
(with larger data samples)

More differential measurements to better

constrain model calculations

Examples:

& Angular correlations (D-hadron, electron-
hadron, electron electron) in Pb-Pb and I,,

& Higher-order flow harmonics (vs)

v' Triangular flow more enhanced than elliptic flow in a
purely collisional scenario with respect to the

collisional+radiative case

v' Higher-order Fourier coefficients more sensitive
incomplete coupling of heavy quarks to the medium

[dNahrgang et al.,

arXiv:1410.5396
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Few outstanding open questions

» Colour charge and quark mass dependence of energy loss
= Expectation AE; < AE, 4 < AE, vs. observation Ry,(D) = Rpa(m)
& Extend p; range of beauty R,, measurements
» Energy loss mechanism: collisional vs. radiative
& Path length dependence of energy loss (via v, at high p;)
& Constrained also by elliptic flow at low p;?
» Hadronization mechanism: coalescence vs. fragmentation
& Measure D, with reduced uncertainties and A,
& Constrained also by more precise R,, and v, measurements at low p;
o Crucial to assess cold nuclear matter effects in the initial and final state
» Interplay between radial flow, coalescence, shadowing, k{-broadening
and energy loss in the measured R,
& D mesons at the LHC down to p;=0 and with reduced uncertainties
& More precise measurements at lower collision energy
& More differential measurements: e.g. correlations and l,,
o Collectivity and thermalization
& More precise charm v, and R,, measurements at low p;
& Beauty v, and higher harmonics accessible with more statistics at the LHC

» To address these questions and eventually access the QGP transport
coefficients we need a systematic comparison of data vs. theory 21
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D meson and pion Ry,
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D meson Raai LHC vs RHIC
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same theoretical model

o D meson R,, quite different for 1<p;<2 GeV/c

=~ Recombination + radial flow?
v Stronger effect at RHIC because of steeper dN/dp;?

& Different role of shadowing at low p; at the two energies? 25



HFE (and HFM) v2 at RHIC, LHC

(a1 0_5 LI B | | LI | I LI I LI | ] LI L I LI I | | LI
> 1 _
non-photonic electron v, Z ALICE Preliminary ]
0.15 —  Minimum bias 0.4 [~ - Heavy-flavour decay e", v,{EP, |An| > 0.9}, |y| < 0.7 —]
—=- Heavy-flavour decay p*, v,{2}, 25 <y <4 ]
0.1 I E 0.3 Pb-Pb, Sy = 2.76 TeV ]
=L " '; $ X 20-40% Centrality Class ]
0.05 r"f\?ié, - 0.2 7
i ﬂ* - .
o N : 01 : |[ & | -
n l - T 1[4 |_':| ]
0osEEH PHENIX, PRE 84 (2011) 044905, ..., ) R SRR R .
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 - E
p{GeVic) B
_0-1 B s v v v b v v by v ow bowow e by by
0 2 4 6 8 10 12 14
P, (GeV/c)

o Similar v, of HFE at midrapidity at RHIC and LHC
& Maybe slightly larger at the LHC, although compatible within uncertainties

» Atthe LHC: v, of HF decay electrons at midrapidity compatible
with that of HF decay muons at forward rapidity

26



Radial flow in small systems?

_E Sickles, arXiv;1309.6924
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Radial-flow interpretation of HF data in p- "

Pb collisions
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& Final state effect in addition to “usual” cold-
nuclear matter effects in the initial state
(nPDFs - shadowing/antishadowing -, k-
broadening, cold-nuclear-matter energy

loss)

& Smaller modification expected at LHC
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