Experimental results on open heavy-flavour in heavy-ion collisions Few outstanding open questions and how to address them

Francesco Prino

INFN – Sezione di Torino

Sapore Gravis Workshop Padova, 9-12 December 2014

Charm and beauty quarks in heavy-ion collisions

Produced in partonic processes with large Q² on short time scale

- Production in QGP expected to be negligible
- pQCD can be used to calculate initial cross sections

Traverse the "full evolution" of the hot and dense medium

- Lose energy via elastic collisions with the medium constituents and gluon radiation
- Flavour conserved in the interactions with the QGP
- Excellent probes of the properties of the medium: transport coefficients, energy loss mechanism, collectivity, thermalization)

Probing the medium properties

Hierarchy expected due to colour-charge and quark-mass dependence of in-medium parton energy loss:

$$\Delta E_{gluon} > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b$$

- Reflected into: $R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$?
- Interactions with the medium constituents can transfer to charm and beauty quarks the collective flow (radial and elliptic) of the medium
 - Large mass: frequent interactions with large coupling needed
 - \Rightarrow Expectation: $v_2(B) < v_2(D)$
 - Are re-scatterings with the medium strong enough to make charm (and beauty) quarks thermalize in the medium?

Heavy flavour reconstruction

What have we learned? In-medium energy loss

- Strong suppression of HF yield at intermediate and high p_T
 - Final state effect due to in-medium energy loss (by comparing to d-Au and p-Pb)

$$\Rightarrow$$
 R_{AA}(HFE,D) \approx R_{AA}(π)

What have we learned? Beauty vs. charm R_{AA}

D meson (ALICE) and $J/\psi\leftarrow B$ (CMS) R_{AA} vs. centrality in p_T ranges tuned to have $< p_T(D) > \approx < p_T(B) > \approx 10-11$ GeV/c

- Expectation from parton-mass dependent energy loss: ΔE_c > ΔE_b
 - Clear indication of $R_{AA}(B) > R_{AA}(D)$ for $8 < p_T(D) < 16 \text{ GeV/c}$
 - Also for 5<p_T<16 GeV/c</p>
 - Described by model calculations with quark-mass dependent energy loss
 - Djordjevic, Djordjevic, PRL112 (2014) 042302
 - MC@sHQ+EPOS: Gossiaux et al., arXiv:1409.0900
 - WHDG: Horowitz et al., J Phys. G38 (2011) 124114

What have we learned? Beauty jets at high p_T

- R_{AA} of b-jets found to be consistent with that of inclusive jets (dominated by light quarks and gluons) at high p_T (>80 GeV/c)

What have we learned? Flow/collectivity

Positive elliptic flow at RHIC and LHC > 0.4

- Comparable with charged particle v₂
- Suggests that charm quarks take part in the collective expansion of the system?
- Elliptic flow at low p_T also sensitive to:
 - ➡ Interactions with medium constituents:
 - ✓ Collisional more effective than radiative processes in building v₂
 - → Hadronization mechanism:
 - ✓ Coalescence increases radial and elliptic flow at intermediate p_T

What have we learned? Collectivity in small systems?

- Double-ridge structure observed in the angular correlations between HF decay electrons and charged hadrons in p-Pb collisions
 - Similar to the one observed in the light-flavour sector (ALICE, PLB719 (2013) 29)
 - Suggests that the mechanism generating the double ridge is at work also for heavy flavours
 - ✓ CGC in initial state? ☐ Dusling, Venugopalan, PRD87 (2013) 094034
 - √ Hydrodynamics in final state?
 ☐ Bozek, Broniowski, PLB718 (2013) 1557
- To be considered: collective flow in small systems (
 \omega Sickles, arXiv:1309.6924)
 would modify the HF hadron p_T spectra in addition to nuclear modification
 of PDFs, k_T-broadening, cold-nuclear-matter energy loss

Few outstanding open questions

- Charm vs. light quark energy loss
 - \Rightarrow Expectation $\Delta E_c < \Delta E_{u,d,s} < \Delta E_g$ vs. observation $R_{AA}(D) \approx R_{AA}(\pi)$
- Charm hadrochemistry: D_s and Λ_c
 - Sensitive to **hadronization mechanism** (coalescence vs. fragmentation)
- Low-p_T D-mesons: LHC vs. RHIC
 - □ Interplay between radial flow, coalescence, shadowing and energy loss
- Measurements at lower collision energy
 - \Rightarrow R_{AA}>~1 measured at \sqrt{s} =62.4 GeV
 - Other handle to study the interplay between radial flow, coalescence, k_T-broadening and energy loss
- Path length dependence of energy loss
 - ⇒ Allow to constrain the contribution of collisional and radiative processes?
- Beauty quark energy loss at low and intermediate p_T
 - ⇒ Low p_T (<10 GeV/c): mass effect on energy loss + radial flow?
 - \Rightarrow Intermediate p_T: at which p_T does R_{AA}(b) become compatible with R_{AA}(light)?
- Elliptic flow of charm (and beauty) hadrons
 - ⇒ Is v2 of D mesons and HFE due to charm quarks participating in the **collective flow**?
 - ☐ Or is it due to hadronization via coalescence with light quarks from the bulk?
- Collectivity in small systems also in the HF sector?
 - Or Colour Glass Condensate?
 - Crucial to assess cold nuclear matter effects in the initial and final state

Charm vs. light

- Similar R_{AA} of D mesons and pions both at RHIC and LHC)
- Described by models including

 - Different momentum spectra of charm quarks, light quarks and gluons
 - Different fragmentation function (harder for charm than for light quarks and gluons)
 - Djordjevic, Djordjevic, PRL112 (2014) 042302
 - Hint for $R_{AA}(D) > R_{AA}(\pi)$ for $p_T < 5$ GeV/c?
 - More data needed to study the (small) effect of c-quark mass at low p
 ⊤

The strange frontier

- D_s^+ results in Pb-Pb at low p_T (<6 GeV/c) might hint at an increased ratio D_s /non-strange D in Pb-Pb collisions at \sqrt{s} =2.76 TeV
- More statistics needed to conclude on the predicted enhancement of the strange/non-strange D meson yield at low/intermediate p_T if charm hadronizes via recombination in the medium
- Important also for the interpretation of $R_{AA}(D)$ vs. $R_{AA}(\pi)$
 - La Kuznetsova, Rafelski, EPJ C 51 (2007) 113
 - He, Fries, Rapp, PRL 110 (2013) 112301

The baryon frontier

- Enhancement of baryon/meson ratios at intermediate p_T for light flavour hadrons in central A-A collisions at RHIC and LHC
 - Described by hadronization via parton-recobination and radial flow
- At high p_T the baryon/meson ratio is consistent with pp results
 - Dominated by hard processes and hadronization via fragmentation
- Is baryon/meson enhanced also in the HF sector?
 - \Rightarrow With larger data samples $\Lambda_{\rm c}$ could become accessible at the LHC
- Important also for the interpretation of $R_{AA}(D)$ vs. $R_{AA}(\pi)$

The low-p_T frontier

Bump in D meson R_{AA} at √s=200 GeV

Due to charm quark radial flow/coalescence

 $N_{\text{events}}(STAR) = 2.4 \cdot 10^8$ $N_{\text{events}}(ALICE) = 1.6 \cdot 10^7$

√s=200 GeV

√s=2.76 TeV

At LHC energy:

More shadowing, different effect of the radial flow 10⁴ on R_{AA} (less steep spectrum in pp)

- Some models (e.g. TAMU) describe both results
- Need more precise measurements at the LHC down to p_T=0

The low-energy frontier

- Yield of HF decay electrons at √s=62.4 GeV enhanced with respect to binary scaled pp collisions
 - ⇒ Large uncertainties, pp reference from ISR experiments
- Described by TAMU model as an interplay between different effects:
- Important to: improve precision, pp reference from same experiment, separate c and b

The beauty frontier

 Low p_T region (<6 GeV/c) and intermediate p_T (20-80 GeV/c) to be explored

⇒HF decay electrons, b-jets at lower p_T, full reconstruction of B mesons?

Collectivity and thermalization

- Positive HF v₂ observed at RHIC and LHC at low p_T:
 - Due to charm quarks participating in the collective flow?
 - Or due to coalescence with a light quark from the bulk?
- More statistics at LHC energy could allow to:
 - Constrain energy loss (collisional/radiative) and hadronization (coalescence/fragmentation) mechanisms
 - First measurement of beauty v₂
 - ₩Παντα ρει? (Ψ Ηραχλειτος, ~500 b.C.)

Elliptic flow at high p_T

- Current v₂ measurements at high p_T not yet conclusive
 - \Rightarrow Positive v_2 at high p_T due to in-medium energy loss
 - Sensitive to path length dependence of parton in-medium energy loss
 - ✓ Different dependence of the partonic energy loss on the in-medium path length expected for collisional and radiative processes (linear vs. ~ quadratic)
- More statistics needed to constrain HF energy loss models exploiting also high-p_T v₂

Data vs. Theory

- Simultaneous description of HF decay electron R_{AA} and v₂ is challenging for theoretical models
- Data can start to constrain energy loss models
 - E.g.: models that include collisional energy loss in an expanding medium + coalescence better reproduce the measured v₂
- Next steps: more systematic comparisons data vs. theory + new observables

New observables (with larger data samples)

- More differential measurements to better constrain model calculations
- Examples:
 - Angular correlations (D-hadron, electron-hadron, electron electron) in Pb-Pb and I_{AA}
 - **⇒** Higher-order flow harmonics (v₃)
 - ✓ Triangular flow more enhanced than elliptic flow in a purely collisional scenario with respect to the collisional+radiative case
 - ✓ Higher-order Fourier coefficients more sensitive incomplete coupling of heavy quarks to the medium
 - □ Nahrgang et al., arXiv:1410.5396

Few outstanding open questions

- Colour charge and quark mass dependence of energy loss
 - \Rightarrow Expectation $\Delta E_c < \Delta E_{u,d,s} < \Delta E_g$ vs. observation $R_{AA}(D) \approx R_{AA}(\pi)$
 - ⇒ Extend p_T range of **beauty** R_{AA} measurements
- Energy loss mechanism: collisional vs. radiative
 - \Rightarrow Path length dependence of energy loss (via v_2 at high p_T)
 - \Rightarrow Constrained also by elliptic flow at low p_T?
- Hadronization mechanism: coalescence vs. fragmentation
 - \Rightarrow Measure D_s with reduced uncertainties and Λ_c
 - Constrained also by more precise R_{AA} and v₂ measurements at low p_T
- Crucial to assess cold nuclear matter effects in the initial and final state
- Interplay between radial flow, coalescence, shadowing, k_T-broadening and energy loss in the measured R_{AA}
 - \Rightarrow D mesons at the LHC down to $p_T=0$ and with reduced uncertainties

 - → More differential measurements: e.g. correlations and I_{AA}
- Collectivity and thermalization

 - ⇒ Beauty v₂ and higher harmonics accessible with more statistics at the LHC
- To address these questions and eventually access the QGP transport coefficients we need a systematic comparison of data vs. theory

Backup

D meson and pion R_{AA}

Djordjevic, Djordjevic, PRL112 (2014) 042302; arXiv:1307.4098

D meson and pion R_{AA}

- Similar R_{AA} of D mesons and pions both at RHIC and LHC)
- Described by models including
 - Mass and colour charge dependent E loss
 - Different momentum spectra of charm quarks, light quarks and gluons
 - Different fragmentation function (harder for charm than for light quarks and gluons)

D meson R_{AA}: LHC vs RHIC

same theoretical model

- D meson R_{AA} quite different for 1<p_T<2 GeV/c
 - Recombination + radial flow?
 - ✓ Stronger effect at RHIC because of steeper dN/dp_T ?
 - \Rightarrow Different role of shadowing at low p_T at the two energies?

HFE (and HFM) v2 at RHIC, LHC

- Similar v₂ of HFE at midrapidity at RHIC and LHC

 ⇒ Maybe slightly larger at the LHC, although compatible within uncertainties
- At the LHC: v₂ of HF decay electrons at midrapidity compatible with that of HF decay muons at forward rapidity

Radial flow in small systems?

- Radial-flow interpretation of HF data in p- 2518 Pb collisions
 - Final state effect in addition to "usual" coldnuclear matter effects in the initial state (nPDFs - shadowing/antishadowing -, k_Tbroadening, cold-nuclear-matter energy loss)
 - Smaller modification expected at LHC energies

