

CMS Upgrades (w/ an emphasis on post-LS2 heavy flavor measurements)

Matt Nguyen Sapore Gravis December 11th, 2014

LHC Luminosity Evolution

Whereas ambitious upgrades are planned for ALICE and LHCb during LS2 For ATLAS and CMS, this is a period of *consolidation*: Phase 1 upgrades Ambitious upgrades are currently being planned for the HL-LHC era: Phase 2

A bright light on new physics ...

Dose, 3000 fb⁻¹ 300 1e+08 1e+07 250 1e+06 200 100000 R [cm] 10000 150 1000 100 100 10 50 1 0.1 0 400 100 200 300 500 600 0 Z [cm] CMS FLUKA geometry v.3.7.0.0

Simulated Event Display at 140 PU (102 Vertices)

Radiation

- Neutron fluences up to 2 x 10¹⁶ n/cm² in pixels
- Pileup
 - 140 average simultaneous interactions (many events with > 180)

Dose [Gy]

IR

"Mainstream" CMS physics goals

In addition to all the great SM precision measurements with Z, W and the top quarks, HI Physics, flavour physics etc. ...

- Driven by the new physics (i.e. the scalar sector) Discovered during run I
- Complete precision measurements of the Higgs boson
- Observe Di-Higgs production and access the self-coupling
- Measure trilinear and quartic couplings of weak bosons
- Measure rare decays and search for forbidden H decays
- Search for an extended scalar sector
- Search for extra-structure, supersymmetric matter, Exotica, ...

From Yves Sirois (LLR), Split '14

Given the scope of the CMS upgrade program based on these goals, what are the prospects for the physics relevant this workshop?

Run 3 PbPb Projections

CMS-PAS-FTR-13-025

Table 3: Quarkonia yield estimates for $L_{int} = 10 \text{ nb}^{-1}$ at $\sqrt{s_{NN}} = 5.5 \text{ TeV}$. Bottomonia are inclusive in p_T , charmonia have $p_T > 6.5 \text{ GeV}/c$.

$\sqrt{s_{NN}}$	2.76 TeV	5.5 TeV						
L _{int}	$150 \ \mu b^{-1}$	10 nb ⁻¹						
Centrality(%)	0-100	0-100	50-100	60-100	70-100	80-100	90-100	0-100
Signal	p _T -inclusive raw yields							$(p_{\rm T} > 30 { m GeV})$
$B \rightarrow J/\psi$	2 250	300 000	12 400	6 150	2 350	810	215	5500
Prompt J/ ψ	9 000	1 200 000	49 500	24 500	9 420	3 240	860	4400
ψ(2S)	200	26 600	1 100	547	210	70	20	100
Y(1S)	2 000	266 000	11 000	5 460	2 090	720	191	267
Y(2S)	300	40 000	1650	820	314	108	29	80
Y(3S)	50	6 700	275	137	52	18	5	20

In terms of delivered yield, precise heavy flavor measurements are possible But, need corresponding detector upgrades and trigger strategy

Key:

Transverse slice

through CMS

Iron return yoke interspersed

with Muon chambers

+ sophisticated hardware (L1) and software (HLT) triggers

Hadron Calorimeter Superconducting

Solenoid

Overview of Phase 1 upgrades

HCAL: http://cds.cern.ch/record/1481837?In=en

Phase 1 L1 Calo trigger upgrade

- CMS L1 accept rate limited by pixel readout to 3 kHz for HI collisions
- In 2011 the collision rate was of 4.5 kHz, only modest rejection required at L1
- Expect 20-30 kHz in 2015 → require a factor of 10 in L1 rejection
- Upgrade motivated primarily by heavy ions! Funded by the DOE

UE subtraction at L1

- Variation of HI UE w/ η of does not permit a useful BG subtraction within a single 2x11 sector
- Access to the full eta-phi map at L1: efficient underlying event subtraction (phi-rings)

Jet triggers for Run 2

Before upgrade: L1 jet trigger fires on every central event!

After upgrade: Sharp turn-on even in central

~ 100x L1 rejection for L1 jets > 60 GeV

11

Measuring spectra w/ jet triggers

extended w/ jet triggers

Rarer probes require lower p_T threshold jet/track triggers L1 calo upgrade should permit, e.g., D meson spectra to high p_T

- For many probes, we do not see full turn off of nuclear effects, i.e., R_{AA} → 1
- However, typically restricted to 60-100%
- Can sample full luminosity of low threshold di-muon triggers in peripheral events
- Already possible for Run 1, but not needed

Cathode Strip Chambers (endcap)

• For Run 2:

- 4th endcap layer for 1.2<|η|<1.8 (CSC + RPC)
- Improved read-out granularity of forward CSC (|η|>1.6)
- complete rewrite of muon track finding at L1
- \rightarrow Improved muon trigger selectivity

Muon LS1 Upgrades

Pixel Upgrade

- Added redundancy \rightarrow fake rejection
- Faster readout cards
- Reduced material budget
- Improved IP resolution

To be installed during 2016 YETS

Impact of pixel upgrade on HI

Tracking efficiency currently limited by track quality requirements for fake rejection \rightarrow after upgrade should be much closer to pp-like tracking efficiency

Also:

- Improved b-tagging, non-prompt J/ψ
- Improved onia mass resolution
- Photon conversions? V0s?

CMS Phase 2 Upgrades

New Tracker

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to η ~ 4

Muons

- Replace DT FE electronics
- Complete RPC coverage in forward region (new GEM/RPC technology)
- Investigate Muon-tagging up to $\eta \sim 4$

Barrel ECAL

- Replace FE electronics
- Cool detector/APDs

Trigger/DAQ

- L1 (hardware) with tracks and rate up ~ 500 kHz to 1 MHz
- L1 Latency > 10 μs
- HLT output up to 10 kHz

New Endcap Calorimeters

- Radiation tolerant
- High granularity

1

https://cds.cern.ch/record/1605208/files/CERN-RRB-2013-124.pdf

Tracker Radiation Damage

Blue tracker modules are inactive after 1000 fb⁻¹ due to very high leakage currents induced by neutron fluence.

Strip and pixel tracker are seriously degraded after Phase 1 need rad-hard replacement

18

Phase 2 Tracker

Strip/Strip Modules 90 μ m pitch/5 cm length

Also, L1 track trigger: high transverse / stub momentum low transverse momentum

Covers up to $\eta = 4.0$

 $100 \,\mu m \, pitch/2.5 \, cm \, length$ 100 µm x 1.5 mm "macropixels"

CMS Preliminary Simulation Fracking efficiency Phase 2 tracker 0.9 0.8 performance 0.7 ۰ 0.6 0.5 0.4 0.3 Dramatically reduced 0.2 material budget 0.1 **High efficiency** 0 -3 -2 out to $|\eta| < 4$ $\sigma(p_T) / p_T$

Improved p_T resolution

Phase 2 Muon Detector

- Improvements of existing detector electronics
- Forward 1.6<|η|<2.4 upgrades
 - Double-layered triple GEMs
 - GE1/1 for LS2, GE2/1 for LS3
 - Glass RPCs
 - → Reduced trigger rate, improved redundancy
- Very forward extension

 6-layered triple GEMs
 At least |η|<3, possibly |η|<4

Dimuon projections

- Gain of x1.5 (1.2) resolution in the barrel (encaps)
- Improved track resolution
- Muon triggering keeping pace with rate

Figure 1: Fit results of the invariant mass distribution for 300 fb⁻¹ and 3000 fb⁻¹. The improvement in the mass resolution for the 3000 fb⁻¹ projection is expected from an improved inner tracker system and removing endcap candidates.

Phase 2 calorimeters

At high $|\eta|$, the PbW0₄ crystals of ECAL endcap progressively lose transparency

2 possible calorimetry options (decision in 2015)

High Granularity (HGCAL) Highly Segmented for particle flow

Shashlik – "Conventional dense":

Phase 2 timeline

- CMS HL-LHC Technical Proposal is being completed now with full-simulation physics studies
 - Decision on endcap calorimeter technology planned for early 2015
- CMS will complete Technical Design Reports on the key upgrades in 2016/17
 - Next two years are very important for final R&D leading up to the TDRs

Conclusions

- Phase 1: Consolidation of current detector

 L1 Calo upgrade: Essential for HI program
 Completion of muon detectors
 New pixel detector for end of 2016
- Phase 2: New detector for HL-LHC era
 - $_{\odot}$ Tracker out to $|\eta|<4,$ including triggering
 - $_{\odot}$ Add'l muon redundancy, possibly ext. to $|\eta|<4$
 - \odot New calo endcaps, possibly high granularity
- Implications for heavy flavor in heavy ions:

 Improved tracking, jet triggers for open HF & b jets
 Improved onia triggering, mass resolution

Upgrade my CMSP

http://www.wsol.com/why-waiting-to-upgrade-your-cms-is-planning-to-fail/