

ALICE report

Maarten Litmaath
CERN
IT-SDC

WLCG Collaboration Workshop
Barcelona
July 8, 2014

Part 1

- Overview
- Data management
- CVMFS monitoring
- Clouds
- Run 3

RUN 2 physics programme and rates

- Target integrated luminosity of 1nb⁻¹ of Pb-Pb collisions (combined RUN 1+RUN 2)
 - Consistent with the ALICE approved programme
 - 4-fold increase in instant luminosity for Pb-Pb
- Double event rate of TPC/TRD
- Increased capacity of HLT system and DAQ
 - Rate up to 8GB/sec to T0

Heavy Ion data taking

RUN 2 detector upgrades

TPC, TRD readout electronics consolidation

TRD full azimuthal coverage

(+5 modules)

 +1 PHOS calorimeter module

New DCAL calorimeter

RUN 2 resources considerations

- Same CPU power needed for reconstruction
- 25% larger raw event size
 - Additional detectors
 - Higher track multiplicity with increased beam energy and event pileup
- ALICE requirements for RUN2 were approved by CRSG in April 2014
- The CPU request growth is compatible with 'flat' budget, i.e. depends purely on technology development
- Major demand on resources towards the end of 2015 (Pb-Pb data taking)

New T2 at Universidad Nacional Autónoma de México (UNAM)

Entered *production* 28 June Initial capacity: 1000 cores, 570 TB Plan:

- Wide area network tuning 10 Gbit capacity (shared)
- Sign WLCG MoU for T2 by end of this year
- Work toward T1 status (next year)

Many thanks to UNAM team!

New proto-T1 at RRC-KI-T1

Entered *production* 25 January Current capacity: 700 slots, 150 TB Joined OPN with 10 Gbit on Apr 25 Plan:

- Custodial storage
- Work toward T1 status

Many thanks to RRC-KI-T1 team!

Software and process improvements

- Moving one calibration iteration to online
 - Software under tests
- Using HLT track seeds for offline reconstruction
 - Comparison of methods ongoing
- Improving performance of GEANT4 simulation for ALICE + development of fast and parameterized simulation
- Collaborating with other experiments to explore contributed resources (i.e. spare CPU cycles on supercomputers)
 - Centres in US, leveraging existing PanDA development
 - New T2 being set up at ORNL, host of Titan supercomputer

Software and process improvements (2)

- HLT farm for offline processing
 - Additional 3% CPU resources
- Improving the performance of organized analysis trains
 - Faster turnaround
- Speeding up and improving the efficiency of the analysis activities by active data management
 - Consolidation of datasets where applicable, introduction of smaller containers (nanoAODs) for specific analysis types

Infrastructure improvements

 Focus on SE stability – major factor for successful analysis and high CPU efficiency

Goal for all SEs >98% availability

See data management section later in this presentation

Infrastructure improvements (2)

- LHCONE programme
 - Europe is largely covered, focus on South America and Asia
 - Larger data volumes, more to transfer between sites
 - Remote access to storage in certain analysis/reconstruction scenarios

Infrastructure improvements (3)

- IPv6 readiness
 - IPv4 address depletion is already a fact for new sites
 - ALICE services are largely IPv6 ready
 - xrootd v.4 should be IPv6 ready (released June 5)
 - Other services are being brought into compliance

Infrastructure improvements (4)

- Refurbishment of SAM/SUM tests
 - WLCG monitoring consolidation project in advanced status
- Site tests will reflect more and more the VO tests
 - In the ALICE case provided by MonALISA

New critical tests will be introduced very carefully

Operations in 2014

Steady running: 37K jobs

Jobs by user since January 2014

- 76% MonteCarlo (unchanged)
- 16% Organised analysis in trains (+6%)
- 2% RAW data reconstruction (-8%, software upgrades)
- 6% Individual user analysis (-6%)

Efficiency since January 2014

- Small effect due to high volume user activities
- A fix in replica access algorithm (bug discovered in April) further increases the overall analysis efficiency
- Continue pushing for larger share of organized analysis (daily software AN tags)

Data volumes since January 2014

- 111.4 PB read, 10.5 PB written
- Regular 'inactive data sets' cleanups, popularity service being put in production

Plans for the next 6 months

- Pass 2/3 of 2011 p-p data and associated MC
 - Full detector recalibration, 2 years of software updates
- Pass 2 of LHC12 p-p, Pass3 of p-Pb data
- From August/September start cosmics trigger data taking
 - Upgraded detectors readout, Trigger, DAQ, HLT
 - Data will be reconstructed Offline
- No special plans for Grid data challenges
 - All data processing aspects are covered by daily activities

ALICE upgrade

- 13 Computing Working Groups
- Particulars
 - Data flow simulation
 - Data transport model
 - FLP (first level processors)/EPN (event processing nodes) traffic shaping, buffers and system scalability
 - Computing platforms
 - Software framework development (ALFA)
- Computing TDR writing in progress
 - Detailed report: <u>Status of O2 project and TDR</u>

ALICE LHCC | June 3rd, 2014 | Pierre Vande Vyvre

Summary of part 1

- Steady operations in the past 6 months
 - Emphasis on increasing the share of organized analysis and overall efficiency
- Gradual software and infrastructure upgrade plans leading up to Run2
 - No dramatic changes of computing and operations model
- Resources will be adequate to cover the ALICE physics programme
 - Resources request 2015-2017 endorsed by CRSG
- Preparations for the ALICE upgrade
 - Ongoing work on system design and simulations, software demonstrators and Computing TRD

Part 2

- Overview
- Data management
- CVMFS monitoring
- Clouds
- Run 3

ALICE data access model

- Central catalogue of LFNs and replica locations
- Data files are accessed directly from the storage
- Jobs go to where a copy of the data is
 - Other required files are read remotely (configuration, calibration, executing and validating scripts etc)
 - Urgent tasks (organized analysis) relax the locality constraint to get the job done quickly for the 'tail' (few last percent) of the jobs
- For all requests the client gets a sorted list of replica locations, function of storage availability and its location, i.e. closest (local) first
 - An omission in that code was fixed mid April

Organized analysis trains

- Running many user tasks over the same input data
- Users are strongly encouraged to join the trains instead of running their own tasks
- The most IO-demanding central processing
- The average analysis requires 2MB/s/core to be 100% CPU efficient, but majority of the current infrastructure doesn't support that
 - New CPUs require much more...

Analysis trains activity

- Example week of organized analysis train read volume:
 - □ Local site storage: 1.56 PB
 - Remote storage: 64 TB
 - 4% remote data access (failover, lifted locality restrictions)
- Read throughput:
 - Local site storage avg: 1.35 MB/s
 - Remote site storage avg: 0.73 MB/s
 - Reading remotely introduces a large penalty!

SE monitoring

- xrootd and EOS data servers publish two monitoring streams
 - ApMon daemon reporting the data server host monitoring and external xrootd parameters
 - Node total traffic, load, IO, sockets, disk IO, memory ...
 - Version, total and used space
 - xrootd monitoring configured as:
 - xrootd.monitor all flush 60s window 30s dest files info user MONALISA HOST:9930
 - Client IP, read and written bytes

Infrastructure monitoring

- On each site VoBox a MonALISA service collects
 - Local SE monitoring data (network interface activity, load, sockets, client access stats etc)
 - □ Job resource consumption, WN host monitoring ...
- Traffic data is aggregated in client IPv4 C-class, LAN/WAN, client site, server site
- ML services perform VoBox to VoBox measurements
 - traceroute / tracepath
 - 1 stream available bandwidth measurements (FDT)
 - This is what impacts the job efficiency
- All results are archived and we also infer the network topology and utilization from them

SE functional tests

- Performed centrally every 2h, targeting the declared redirector
 - add/get/rm suite using the entire AliEn stack
 - Or just get if the storage is full
- The dynamically discovered xrootd data servers are tested individually, with a simplified suite
- Monitor discrepancies between declared volume and total space currently seen by the redirector
- □ Site admins <u>prompted</u> to solve the above issues
 - And many other related tests, like insufficiently large TCP buffer sizes

Replica discovery mechanism

- Closest working SEs are used for both reading and writing
 - Sorting the SEs by the network distance to the client making the request
 - Combining network topology data with the geographical location
 - Leaving as last resort the SEs that fail the respective functional test
 - Weighted with their free space and recent reliability
- Writing is slightly randomized for more 'democratic' data distribution

Weight factors

- Free space modifies the distance with
 - f (In(free space / 5TB))
- Recent history of add, resp. get contribute with
 - □ 75% * last day success ratio +
 - 25% * last week success ratio
- The result is a uniform federation with a fully automatic data placement procedure based on monitoring data

Plans

- In the near future ALICE will upgrade to xrootd 4.0 centrally
 - AliEn, using the xrootd the command line
 - ROOT, using xrootd as library
 - Eventually replacing xrd3cp with the new client that implements the same functionality
- Implement IPv6 network topology discovery and use it for SE discovery
 - We have already started getting requests on IPv6
- □ Retry using async IO in ROOT with the new releases

Site plans

- Long overdue xrootd upgrade
 - A few sites still run rather old versions
- □ Will ask all to upgrade to 4.0 as soon as it is stable
- For newly deployed storage we recommend EOS
 - Five sites already using it
 - □ Site admins have provided recipes, being tuned further
- Work closer with the sites to identify IO bottlenecks and solve them
 - Keeping in mind the target of 2MB/s/core

Part 3

- Overview
- Data management
- CVMFS monitoring
- Clouds
- Run 3

Motivation

- CVMFS is now a critical services for all VOs
- Currently missing information about the performance of the Stratum 0/1 and the local site proxies
 - Some bits of information in various places, like the availability of Stratum 0 services, awstats ...
 - Not enough to assess whether the services performance is OK
- Some sites are alerted for failures by the users (tasks failing)

Proposed solution

- As presented to the WLCG Monitoring Consolidation WG on 2014/06/06
- Deploy a monitoring service on each server of the infrastructure
 - Full host monitoring (CPU, memory, network IO, disk IO performance, sockets and processes in each state)
 - CVMFS and Squid-specific probes
- Real time access to the parameters, plus
 - Alarms, history of all parameters, simple display options
 - Trivial to integrate in dashboard

Prototype

- http://cvmfsmon.cern.ch/
- Very simple <u>package</u> to deploy on the Squid proxy server
 - Either as RPM or as a script to run locally
- Based on MonALISA monitoring service
 - All host monitoring modules enabled
 - New Squid module querying the status 1/minute
 - Network topology discovery enabled for the group
- Installed on 35 servers already (6 T1 sites)
 - Many thanks for the help of Subatech, BITP and ISS site admins during the initial iterations and to all who have deployed and provided feedback!

Part 4

- Overview
- Data management
- CVMFS monitoring
- Clouds
- Run 3

CernVM Elastic Clusters

Your task

CernVM

HTCondor

elastiq

What is an Elastic Cluster?

- A cluster of CernVM virtual machines: one head node, many workers
- Running the HTCondor job scheduler
- Capable of growing and shrinking based on the load with elastiq
- Configured via a web interface: <u>cernvm-online.cern.ch</u>
- Entire cluster launched with a single command
- User interacts only by submitting jobs
- No external tools: embedded elasticity, ideal for opportunistic clouds

Release Validation cluster

Fully disposable Elastic Cluster for running the Release Validation

- No need to carry the software with the VMs
 - AliRoot versions to validate on CernVM-FS
- The cluster (incl. the head node) can be thrown away after use
 - Worker VMs automatically wiped out when validation completes
 - Output and log files stored on shared storage (EOS)
- Procedure fully repeatable
 - Cluster can be rebuilt using a configuration file
 - The very same environment can be restored as it was

A private cloud on the HLT farm

- HLT farm is a delicate real-time environment
 - Opportunistic exploitation can by no means interfere with standard HLT operations
- Hard separation of HLT environment and the opportunistic one
 - Best isolation technique: configure HLT nodes as a private cloud
- We start working on the current "devel" farm
 - Configuration will be moved to the forthcoming "production" farm
 - We are considering OpenStack → popular, lots of support
- Ideal type of opportunistic jobs: CPU-intensive → Monte Carlos
 - I/O uplink and gateway might be a bottleneck on HLT

Preliminary milestones

August:

- base OpenStack services configured on the devel cluster
- network isolation operational

September:

- test the devel configuration on the production cluster
- network hardware configured for traffic shaping
- configure the special AliEn VOBOX

October:

ready for running special AliEn jobs

Part 5

- Overview
- Data management
- CVMFS monitoring
- Clouds
- Run 3

Towards Run 3

- Detectors and running scenario:
 - ALICE upgrade aiming to high statistics sample (10 nb⁻¹)
 - continuous readout TPC, upgraded ITS
 - 50 kHz PbPb interaction rate (current rate x100)
 - ~1.1 TB /s detector readout
- Data reduction strategy
 - Up to factor 20 by doing online reconstruction and compression
 - Store only the reconstruction results, discard raw data
 - demonstrated with TPC cluster finder running on HLT since PbPb 2011
 - Requires ~250k CPU cores
- Overall ALICE expects the WLCG Grid to grow by a factor 2.5 by 2019 and provide ~125k jobs slots to ALICE
 - Based on 20% (CPU) and 15% (Disk) yearly growth

O2 Facility and computing model for Run 3

- ALICE Online-Offline (O2) Facility at P2 will have to provide the remaining CPU capacity (at least 50% of total CPU budget) as well as a large disk buffer to allow all data to be stored after the first stage reconstruction and while waiting for asynchronous second stage calibration and reconstruction
 - Large disk buffer (25 PB)
- Custodial (archive) storage at T0 and T1s
 - Subsequent re-reconstruction passes at O2 facility, T0/T1
- Simulation and associated reconstruction will run mostly at T2s

New software framework for Run 3

- Should work in Offline and Online environment
- Based on new technologies
 - Root 6.x, C++11
- Optimized for I/O
 - New data model

- Capable of utilizing hardware accelerators
 - FPGA, GPU, MIC ...
- AliRoot 6.x, our new software framework will be based on ALFA common software foundation jointly developed between ALICE & GSI/FAIR
 - Support for concurrency in an heterogeneous and distributed environment
 - Based on OMQ messaging framework

Reducing complexity is the key

for illustration only

- Virtually joining together the sites based on proximity (latency) and network capacity into Regional Data Clouds
- Each cloud/region provides reliable data management and sufficient processing capability
 - Dealing with handful of clouds/regions instead of the individual sites

Time is short

- There is no time to reinvent the wheel
 - Run2 is about to start and Run3 is only a few years away
 - Data is the product of every experiment
 - Data management is complex and it takes a very long time to iron out all bugs and have confidence in data management software
- We must start from something we already trust
 - EOS is the product that most closely matches our needs and expectations

Why EOS?

- EOS is already tested to the scale required to manage ALICE internal disk buffer@P2
 - some extras might be needed
- Provides data access via
 - high performance private xroot protocol
 - standard HTTP protocol
- On the Grid side, we would need scalable global name space
 - Replacement for a global file catalog
- Federation of Regional Data Clouds