
Multicore Deployment Task ForceMulticore Deployment Task Force
status reportstatus report

WLCG Collaboration WorkshopWLCG Collaboration Workshop

Barcelona, July 7Barcelona, July 7thth 2014 2014

Alessandra Forti and Antonio Pérez-Calero
Yzquierdo

for the WLCG Multicore deployment Task Force

07-07-2014 Multicore deployment TF report 2

OutlineOutline

● Multicore jobs in WLCG

● The problem of multicore job scheduling

● The WLCG multicore deployment Task Force

● Results and current status

● Conclusions and Outlook

07-07-2014 Multicore deployment TF report 3

Multicore jobs in WLCGMulticore jobs in WLCG
Looking at the restart of the LHC data taking in 2015,
experiments are developing multicore applications due to:

● Hardware evolution: over the last decade architecture design goes in the
direction of adding processors to the CPU, while individual core
performance will probably not increase significantly

● Evolution of LHC conditions: higher data volumes to be processed,
with increased event complexity due to higher pileup, causing increasing

– processing time per event

– memory usage

07-07-2014 Multicore deployment TF report 4

WLCG Multicore Deployment TFWLCG Multicore Deployment TF
Evaluate:

● Multicore capabilities of local batch systems

● Compatibility of approaches to multicore job distribution by different
LHC VOs

This talk: summary of the activities of this task force over the last
months.

● Acknowledgements: thanks to all the participating people from
experiments and sites, which provided the content for this
talk!

Project twiki: https://twiki.cern.ch/twiki/bin/view/LCG/DeployMultiCore

07-07-2014 Multicore deployment TF report 5

Multicore TF objectivesMulticore TF objectives

● Integrate scheduling of both multicore and single-
core jobs, that will still be used by LHC experiments,
as well as other VOs in shared sites.

● Avoid splitting resources, such as dedicated whole
node slots and separated queues, which may
introduce additional inefficiency and complexity in site
resources configuration and management.

● Maximize CPU usage: minimize idle CPUs while
there is job to be done

07-07-2014 Multicore deployment TF report 6

Review of batchReview of batch systemssystems
● We have reviewed batch systems in terms of their functionalities useful for

multicore scheduling

● Experience related to:

– ATLAS, initially, as multicore jobs in production since January

– CMS, running at T1s since May

● Mini workshops dedicated to each technology

– HTCondor (RAL), UGE (KIT), Torque/Maui (NIKHEF, PIC), SLURM
(CSCS)

● Main conclusion: there is a solution for most popular batch systems to
support multicore jobs

– Native functionalities

– In some cases, complementary scripts are needed

● System configuration (tuning) depends on site load composition and running
conditions

07-07-2014 Multicore deployment TF report 7

Scheduling multicore jobsScheduling multicore jobs
● Key problem: in order for a multicore job to start in a non-dedicated environment,

the machine needs to be sufficiently drained

● Creating a multicore slot:

– Prevent single core jobs from taking freed resources

● draining = idle CPUs!

– Higher priority single core arrives and occupies slots

● wasted draining!

07-07-2014 Multicore deployment TF report 8

Scheduling with backfillingScheduling with backfilling
Backfilling can be used to reduce the amount of idle CPUs caused by the WN
draining:

● Jobs of lower priority are allowed to utilize the reserved resources only if their
prospective job end (i.e. their declared wallclock usage) is before the start of the
reservation

job

job

job

BACKFILLED
JOBS

07-07-2014 Multicore deployment TF report 9

The ability of the scheduler algorithm to perform successful
backfilling depends on the concepts of entropy and
predictability

● Entropy: having a variety of jobs with different requirements in the
queue. There should be a distribution of jobs resources requests in
order to increase the likelihood of finding the right "piece" to fill each
temporary hole in draining WNs

● Predictability: reasonably accurate prediction for jobs running time, so
that the scheduler can make a decision on whether it should run this job
in that hole or not.

– How accurate this prediction needs to be?

Scheduling with backfillingScheduling with backfilling

07-07-2014 Multicore deployment TF report 10

Job running time estimationJob running time estimation

Providing a reliable estimation of job running times is however difficult for various
reasons:

● Inherent to the jobs themselves, as the instantaneous luminosity and pile-up
determine the complexity of events and thus the job running time

– different for analysis, MC production and data reconstruction/reprocessing

– there are currently ways to mitigate this, for example data reconstruction
workload distributed in a number of jobs with approximately equal running time

● Access to input data waiting times: unpredictable in a complex environment
such as the WLCG

● Variance in CPU power for WNs distributed across the grid and also within sites

– This may not be so much of a problem if the actual different between the faster
and lower machines at a given site still provides an estimation accurate
enough to do some backfilling

● The masking effect of pilots: submission of jobs through pilots introduce some
other effects, such as running more than one job per pilot, waiting for new jobs to
appear, etc.

07-07-2014 Multicore deployment TF report 11

Conserving the slotsConserving the slots
● There are two aspects of the problem: creating and conserving multicore slots

– Once the cost has been paid, avoid multicore slot destruction

VO:1 job VO:2 job

07-07-2014 Multicore deployment TF report 12

Conserving the slotsConserving the slots

Keep the multicore slots alive:

● Continuous and stable supply of multicore jobs

– so that the vacated slots can be filled with new multicore jobs

– avoid bursty submission patterns, which force the system to
continue and re-adjust the level of draining

● Different VOs should agree on a common slot size so that they can
access the same slots in shared sites.

– This is well understood and there is general consensus that there
should exist at least a default value (for example 8)

● Rank expressions/job priorities: allocate multicore jobs to multicore
slots, instead of getting partially filled by single core jobs.

07-07-2014 Multicore deployment TF report 13

Multicore job submission models: ATLASMulticore job submission models: ATLAS

ATLAS job submission principles:

● keep single core and multicore jobs separated

● one pilot pulls only one payload.

Its strong point would be the entropy. The experiment submission
system is being adapted to provide the job running times to the batch
systems.

07-07-2014 Multicore deployment TF report 14

Multicore job submission models: CMSMulticore job submission models: CMS
CMS job submission principles:

● single core and multicore jobs into the same pilots thanks to some internal
machinery (glideinWMS partitionable slots) that can handle the mixture of jobs

● pilots continue pulling jobs until they exhaust the allowed walltime limits

In relation to a backfilling strategy, the strong point of this model would be the
predictability, although it would tend to reduce the entropy from the system.

However, by pulling multiple payloads, it contributes to keeping the multicore slots
alive

07-07-2014 Multicore deployment TF report 15

● Results

07-07-2014 Multicore deployment TF report 16

Initial results from ATLASInitial results from ATLAS
● Most sites were initially exposed to ATLAS jobs, as they started earlier with MC

production via multicore jobs. Experience from KIT:

Multicore jobs: with longer
waiting times combined with
short running times

The cost of draining the slot to
run a multicore job is not fully
exploited by short running jobs

Ref: https://indico.cern.ch/event/298062/contribution/3/material/slides/0.pdf

07-07-2014 Multicore deployment TF report 17

Bursty multicore jobs
submission patterns observed

Ref: https://indico.cern.ch/event/298062/contribution/3/material/slides/0.pdf

Initial results from ATLASInitial results from ATLAS
● Most sites were initially exposed to ATLAS jobs, as they started earlier with MC

production via multicore jobs. Experience from KIT:

07-07-2014 Multicore deployment TF report 18

Cancelled draining nodes.

Conclusion: need to constantly
drain slots to maintain the number of
running multicore jobs

Constant draining means keeping
idle CPUs all the time

Draining rate retuned in an attempt
to reduce wastage

Conclusion: the draining rate has
be tuned according to the amount of
running and queued multicore jobs

Ref: https://indico.cern.ch/event/298065/contribution/0/material/slides/1.pdf

Initial results from ATLASInitial results from ATLAS
● Most sites were initially exposed to ATLAS jobs, as they started earlier with MC

production via multicore jobs. Experience from RAL:

07-07-2014 Multicore deployment TF report 19

● When no backfilling is available due to the lack of running time estimates,
draining nodes has a cost in idle CPUs

● The impact of the degradation of CPU usage as a consequence of draining
depends on the size and load composition of the site.

– However, even if small, could be extremely important, as in general funding
is linked to good results

● Short multicore jobs do not fully exploit the effort made in creating the multicore
slot for them

● Job submission patterns affect tuning, performance and wastage of the system

– Wavelike patterns require to constantly tune the amount of draining
needed

First conclusions from ATLAS jobsFirst conclusions from ATLAS jobs

07-07-2014 Multicore deployment TF report 20

Multicore slot conservationMulticore slot conservation
With no backfilling available, sites are opting for conserving multicore
slots as the preferred strategy:

● It accommodates both CMS and ATLAS models

● It is a native solution for a number of batch systems (e.g. UGE at KIT), while
other may require additional components (e.g. Mcfloat, see next slide).

One implementation of such strategy is the dynamic partitioning of site resources

● Moving WNs between separated pools for single and multicore jobs

● The boundary between the two partitions is adjusted dynamically to load
variations:

– no draining is needed to support a constant multicore job load

– draining in a very controlled amount: only a small percentage of the total
number of cores in a site being drained simultaneously (e.g. 1-2% NIKHEF)

● increasing the fraction of resources for multicore jobs may take quite a
long time

07-07-2014 Multicore deployment TF report 21

Dynamic partitioningDynamic partitioning
Mcfloat for Torque/Maui developed at NIKHEF, used also at PIC

a)

b) d)

c)

07-07-2014 Multicore deployment TF report 22

● Main conclusion: once sites have been exposed to ATLAS multicore jobs no additional
adjustments have been necessary for CMS jobs (KIT, RAL and PIC reports)

– thanks to the agreement on the slot size (8 cores)

● CMS multicore job submission more stable than that of ATLAS

● Results from PIC using mcfloat (second half of June)

Results from CMS jobsResults from CMS jobs

CPU usage:
~98%

mcore jobs

07-07-2014 Multicore deployment TF report 23

● CPU efficiency results: CMS multicore pilots, currently being filled
with 8 single core jobs, presents additional CPU inefficiencies
compared to single core jobs (report from RAL)

– need better tuning of the internal mechanism

Results from CMS jobsResults from CMS jobs

single core jobs: ~80% multi core jobs: ~60%

07-07-2014 Multicore deployment TF report 24

● Starting to see results
f r o m c o m b i n e d
experience: e.g. last
week multicore jobs at
PIC

Fresh plots: combined submissionFresh plots: combined submission

CMS

ATLAS T1

ATLAS T2

07-07-2014 Multicore deployment TF report 25

● Conclusions and Outlook

07-07-2014 Multicore deployment TF report 26

ConclusionsConclusions
● Multicore jobs will be required to process and simulate data in the next LHC run

● The distribution and scheduling of multicore jobs across the WLCG is a problem in
itself:

– multitude of sites with diverse batch system technologies

– different job submission models for each experiment (ATLAS and CMS)

● The WLCG multicore deployment task force has the mandate of coordinating
these activities to make sure they can work together

● Results show that, since backfilling is not currently available, multicore slots have
to be conserved to avoid unnecessary draining resulting in CPU wastage

– A dynamic partitioning of the resources into separated WN pools is emerging
as a viable solution

● Big thanks NIKHEF (Jeff Templon) for the mcfloat tool!

– Torque/maui sites are encouraged to try this strategy

● Starting to get promising results of the combined CMS+ATLAS experience

07-07-2014 Multicore deployment TF report 27

OutlookOutlook
● The immediate objective is to continue testing both submission models (CMS

and ATLAS) in shared environments at real scale

– Evaluate their compatibility

– Analyze performance dependency on size of each site, the actual mixture of
single core / multicore jobs, if the site is dedicated mainly to HEP or not, the
actual batch system capabilities and its particular tuning, etc.

● For these tests, the ideal place are sites supporting both experiments with a
diversity of batch systems to study.

– CMS and ATLAS just started to send multicore jobs concurrently to shared
Tier1s

● Multicore support result from the interaction of the VO submission models with
local batch system capabilities and scheduler tuning

– It is and iterative process, feedback exchange will be needed: sites ↔ Vos

● Major milestone, to be ready by end of October, looks feasible

