Cosmology

V.A. Rubakov

Institute for Nuclear Research of the Russian Academy of Sciences

Department of Particle Physics and Cosmology
Physics Faculty
Moscow State University

Outline

- Lecture 1
 - Expanding Universe
 - Dark matter: evidence
 - WIMPs
- Lecture 2
 - Axions
 - Theory
 - Cosmology
 - Search
 - Warm dark matter
 - Sterile neutrino
 - Gravitino
 - Dark matter summary
 - Baryon asymmetry of the Universe
 - Generalities.
 - Electroweak baryon number non-conservation

Outline, cont'd

- Lecture 3
 - Electroweak baryogenesis. What can make it work?
 - Before the hot epoch
 - Cosmological perturbations
 - Regimes of evolution
 - · Acoustic oscillations: evidence for pre-hot epoch
 - Inflation and alternatives
 - BICEP-2 saga
 - Conclusions

Appendices

- Calculation of WIMP mass density
- Estimating axion mass density
- Wave equation in expanding Universe
- Dark energy
- CMB anisotropies, BAO and recent Universe
- Anthropic principle/Environmentalism

Lecture 1

Expanding Universe

The Universe at large is homogeneous, isotropic and expanding.

3d space is Euclidean (observational fact!)

Sum of angles of a triangle = 180° , even for triangles as large as the size of the visible Universe.

All this is encoded in space-time metric (Friedmann–Lemâitre–Robertson–Walker)

$$ds^2 = dt^2 - a^2(t)\mathbf{dx}^2$$

x: comoving coordinates, label distant galaxies.

a(t)dx: physical distances.

a(t): scale factor, grows in time; a_0 : present value (matter of convention)

The Universe at large is homogeneous, isotropic and expanding. 3d space is Euclidean (observational fact!) Space-time metric

$$ds^2 = dt^2 - a^2(t)\mathbf{dx}^2$$

a(t)dx: physical distances.

a(t): scale factor, grows in time; a_0 : present value

$$z(t) = \frac{a_0}{a(t)} - 1$$
: redshift

Light of wavelength λ emitted at time t has now wavelength $\lambda_0 = \frac{a_0}{a(t)}\lambda = (1+z)\lambda$.

$$H(t) = \frac{\dot{a}}{a}$$
: Hubble parameter, expansion rate

Present value

$$H_0 = (67.3 \pm 1.2) \ \frac{\text{km/s}}{\text{Mpc}} = (14 \cdot 10^9 \ \text{yrs})^{-1}$$

1 Mpc =
$$3 \cdot 10^6$$
 light yrs = $3 \cdot 10^{24}$ cm

■ Hubble law (valid at $z \ll 1$)

$$z = H_0 r$$

Figs. a,b,c

Problem: prove the Hubble law

Hubble diagram for SNe1a

$$\mathsf{mag} = 5\log_{10}r + \mathsf{const}$$

Hubble diagram, recent

Systematics still large

The Universe is warm: CMB temperature today

$$T_0 = 2.7255 \pm 0.0006 \text{ K}$$

Fig.

It was denser and warmer at early times.

CMB spectrum

T = 2.726 K

Present number density of photons

$$n_{\gamma} = \#T^3 = 410 \frac{1}{\text{cm}^3}$$

Present entropy density

$$s = 2 \cdot \frac{2\pi^2}{45} T_0^3 + \text{neutrino contribution} = 3000 \frac{1}{\text{cm}^3}$$

In early Universe (Bose-Einstein, Fermi-Dirac)

$$s = \frac{2\pi^2}{45}g_*T^3$$

 g_* : number of relativistic degrees of freedom with $m \lesssim T$; fermions contribute with factor 7/8.

Slow expansion \Longrightarrow entropy conservation \Longrightarrow Entropy density scales exactly as a^{-3}

Temperature scales approximately as a^{-1} .

Dynamics of expansion

Friedmann equation: expansion rate of the Universe vs total energy density ρ ($M_{Pl} = G^{-1/2} = 10^{19}$ GeV):

$$\left(\frac{\dot{a}}{a}\right)^2 \equiv H^2 = \frac{8\pi}{3M_{Pl}^2}\rho$$

Einstein equations of General Relativity specified to homogeneous isotropic space-time with zero spatial curvature

Present energy density

$$\rho_0 = \rho_c = \frac{3M_{Pl}^2}{8\pi} H_0^2 = 5 \cdot 10^{-6} \frac{\text{GeV}}{\text{cm}^3}$$
$$= 5 \frac{m_p}{\text{m}^3}$$

 $\overline{h} = c = k_B = 1$ in what follows

Present composition of the Universe

$$\Omega_i = rac{
ho_{i,0}}{
ho_c}$$

present fractional energy density of *i*-th type of matter.

$$\sum_{i} \Omega_{i} = 1$$

- Dark energy: $Ω_Λ = 0.685$ $ρ_Λ$ stays (almost?) constant in time
- **▶** Non-relativistic matter: $\Omega_M = 0.315$

$$\rho_M = mn(t)$$
 scales as $\left(\frac{a_0}{a(t)}\right)^3$

- Dark matter: $\Omega_{DM} = 0.265$
- Usual matter (baryons): $\Omega_B = 0.050$
- Pelativistic matter (radiation): $\Omega_{rad} = 8.6 \cdot 10^{-5}$ (for massless neutrinos)

$$\rho_{rad} = \omega(t)n(t)$$
 scales as $\left(\frac{a_0}{a(t)}\right)^4$

Friedmann equation

$$H^{2}(t) = \frac{8\pi}{3M_{Pl}^{2}} \left[\rho_{\Lambda} + \rho_{M}(t) + \rho_{rad}(t)\right] = H_{0}^{2} \left[\Omega_{\Lambda} + \Omega_{M} \left(\frac{a_{0}}{a(t)}\right)^{3} + \Omega_{rad} \left(\frac{a_{0}}{a(t)}\right)^{4}\right]$$

$$...$$
 \Longrightarrow Radiation domination \Longrightarrow Matter domination \Longrightarrow Λ —domination $z_{eq}=3500$ now $T_{eq}=9500~{\rm K}=0.8~{\rm eV}$ $t_{eq}=52\cdot 10^3~{\rm yrs}$

Expansion at radiation domination

Expansion law:

$$H^2 = \frac{8\pi}{3M_{Pl}^2}\rho \implies \frac{\dot{a}^2}{a^2} = \frac{\text{const}}{a^4}$$

Solution:

$$a(t) = \operatorname{const} \cdot \sqrt{t}$$

$$H = \frac{\dot{a}}{a} = \frac{1}{2t}$$
, $\rho \propto \frac{1}{t^2}$

Decelerated expansion: $\ddot{a} < 0$.

NB: Λ-domination

$$\frac{\dot{a}^2}{a^2} = \frac{8\pi}{3M_{Pl}^2} \rho_{\Lambda} = \text{const} \Longrightarrow a(t) = \mathbf{e}^{H_{\Lambda}t}$$

accelerated expansion

Fig.

Deceleration to acceleration

$$\frac{H}{1+z} = \frac{\dot{a}}{a} \cdot \frac{a}{a_0} = \frac{\dot{a}}{a_0} = \dot{a}(z) \; ; \quad \text{large } z \; \leftrightarrow \; \text{early time}$$

Cosmological (particle) horizon

Light travels along $ds^2 = dt^2 - a^2(t)d\mathbf{x}^2 = 0 \Longrightarrow dx = dt/a(t)$. If emitted at t = 0, travels finite coordinate distance

$$\eta = \int_0^t \frac{dt'}{a(t')} \propto \sqrt{t}$$
 at radiation domination

 $\eta \propto \sqrt{t}$ \Longrightarrow visible Universe increases in time

Fig.

Physical size of causally connected region at time t (horizon size)

$$l_{H,t} = a(t) \int_0^t \frac{dt'}{a(t')} = 2t$$
 at radiation domination

In hot Big Bang theory at both radiation and matter domination

$$l_{H,t} \sim t \sim H^{-1}(t)$$

Today $l_{H,t_0} \approx 15 \; \text{Gpc} = 4.5 \cdot 10^{28} \; \text{cm}$

Causal structure of space-time in hot Big Bang theory

We see many regions that were causally disconnected by time t_r . Why are they all the same?

Cornerstones of thermal history

Big Bang Nucleosynthesis, epoch of thermonuclear reactions

$$p+n \rightarrow {}^{2}H$$
 $^{2}H+p \rightarrow {}^{3}He$
 $^{3}He+n \rightarrow {}^{4}He$
up to ^{7}Li

Abundances of light elements: measurements vs theory

$$T = 10^{10} \rightarrow 10^9 \text{ K}, \quad t = 1 \rightarrow 300 \text{ s}$$

Earliest time in thermal history probed so far

Fig.

Recombination, transition from plasma to gas.

$$z=1090,\ T=3000\ {\rm K},\quad t=380\ 000\ {\rm years}$$
 Last scattering of CMB photons

- Neutrino decoupling: T = 2 3 MeV $\sim 3 \cdot 10^{10}$ K, $t \sim 0.1 1$ s
- Generation of dark matter*
- Generation of matter-antimatter asymmetry*

 $\eta_{10} = \eta \cdot 10^{-10} =$ baryon-to-photon ratio. Consistent with CMB determination of η

$$T = 2.726^{\circ} K$$
, $\frac{\delta T}{T} \sim 10^{-4} - 10^{-5}$

Planck

Unknowns

Dark matter

- Astrophysical evidence: measurements of gravitational potentials in galaxies and clusters of galaxies
 - Velocity curves of galaxies

Fig.

Velocities of galaxies in clusters

Original Zwicky's argument, 1930's

$$v^2 = G \frac{M(r)}{r}$$

- Temperature of gas in X-ray clusters of galaxies
- Gravitational lensing of clusters

Fig.

Etc.

Rotation curves

Gravitational lensing

Bullet cluster

Outcome

$$\Omega_M \equiv \frac{\rho_M}{\rho_c} = 0.2 - 0.3$$

Assuming mass-to-light ratio everywhere the same as in clusters NB: only 10 % of galaxies sit in clusters

Nucleosynthesis, CMB:

$$\Omega_B = 0.05$$

The rest is non-baryonic, $\Omega_{DM} \approx 0.26$.

Physical parameter: mass-to-entropy ratio. Stays constant in time. Its value

$$\left(\frac{
ho_{DM}}{s}\right)_0 = \frac{\Omega_{DM}
ho_c}{s_0} = \frac{0.26 \cdot 0.5 \cdot 10^{-6} \text{ GeV cm}^{-3}}{3000 \text{ cm}^{-3}} \simeq 4 \cdot 10^{-10} \text{ GeV}$$

Cosmological evidence: growth of structure

CMB anisotropies: baryon density perturbations at recombination \approx photon last scattering, T = 3000 K, z = 1100:

$$\delta_B \equiv \left(\frac{\delta \rho_B}{\rho_B}\right)_{z=1100} \simeq \left(\frac{\delta T}{T}\right)_{CMB} \sim 10^{-4}$$

In matter dominated Universe, matter perturbations grow as

$$\frac{\delta \rho}{\rho}(t) \propto a(t)$$

Perturbations in baryonic matter grow after recombination only If not for dark matter,

$$\left(\frac{\delta\rho}{\rho}\right)_{today} = 1100 \times 10^{-4} \sim 0.1$$

No galaxies, no stars...

Perturbations in dark matter start to grow much earlier (already at radiation-dominated stage)

Growth of perturbations (linear regime)

NB: Need dark matter particles non-relativistic early on.

Neutrinos are not considerable part of dark matter (way to set cosmological bound on neutrino mass, $m_V \lesssim 0.1$ eV for every type of neutrino)

UNKNOWN DARK MATTER PARTICLES ARE CRUCIAL FOR OUR EXISTENCE

If thermal relic:

Cold dark matter, CDM

 $m_{DM} \gtrsim 100 \text{ keV}$

Warm dark matter

 $m_{DM} \simeq 1 - 30 \text{ keV}$

Canidates for Dark Matter particles are numerous

WIMPs

Simple but very suggestive scenario

- Assume there is a new heavy stable particle X
 - Interacts with SM particles via pair annihilation (and crossing processes)

$$X+X\leftrightarrow q\overline{q}$$
, etc

- ullet Parameters: mass M_X ; annihilation cross section at non-relativistic velocity σ
- Assume that maximum temperature in the Universe was high, $T \gtrsim M_X$
- Calculate present mass density

Outcome: mass to entropy ratio

$$rac{M_X n_X}{S} = \# rac{\ln(M_X M_{Pl}^* \langle \sigma v \rangle)}{\langle \sigma v \rangle \sqrt{g_*(T_f)} M_{Pl}} \; ; \qquad \# = rac{3\sqrt{5}}{\sqrt{\pi}}$$

● Correct value, mass-to-entropy= $4 \cdot 10^{-10}$ GeV, for

$$\sigma_0 \equiv \langle \sigma v \rangle = (1 \div 2) \cdot 10^{-36} \text{ cm}^2 = (1 \div 2) \text{ pb}$$

Weak scale cross section.

Gravitational physics and EW scale physics combine into

mass-to-entropy
$$\simeq rac{1}{M_{Pl}} \left(rac{{\sf TeV}}{lpha_W}
ight)^2 \simeq 10^{-10} \; {\sf GeV}$$

• Mass M_X should not be much higher than 100 GeV

Weakly interacting massive particles, WIMPs.

Cold dark matter candidates

SUSY: LSP neutralinos, $X = \chi$

But situation is rather tense already: annihilation cross section is often too low

Important supperssion factor: $\langle \sigma v \rangle \propto v^2 \propto T/M_\chi$ because of p-wave annihilation in case $\chi \chi \to Z^* \to f \overline{f}$:

Relativistic $ff \implies$ total angular momentum J = 1

 $\chi\chi$: identical fermions \Longrightarrow L=0, parallel spins impossible \Longrightarrow p-wave

Constrained MSSM

Less constrained MSSM

Direct searches are sensitive to SUSY

The LHC becomes sensitive too

Khachatryan et.al.' 2014

TeV SCALE PHYSICS MAY WELL BE RESPONSIBLE FOR GENERATION OF DARK MATTER

Is this guaranteed?

By no means. Other good DM candidates: axion, sterile neutrino, gravitino.

Plus a lot of exotica...

Crucial impact of the LHC to cosmology, direct and indirect dark matter searches