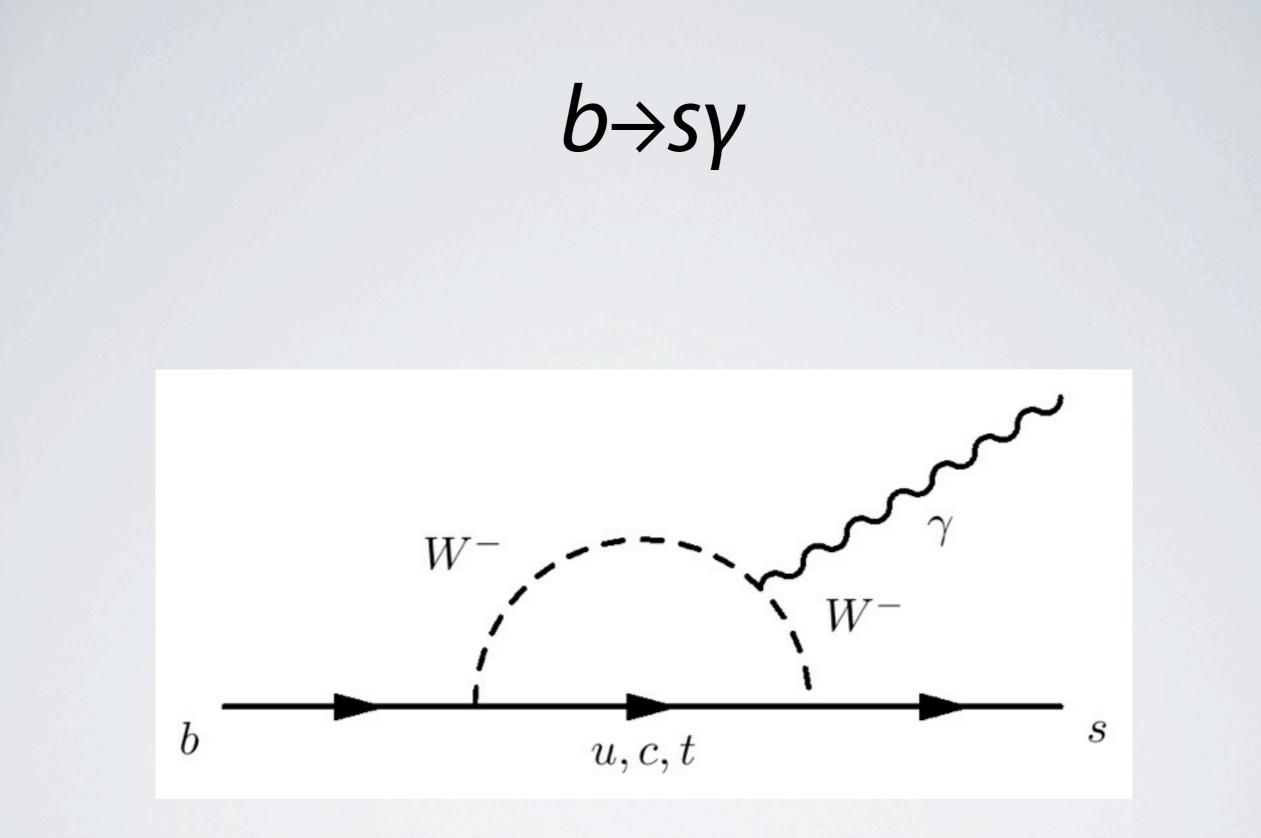
LHC seminar

Photon polarization in *b*→sγ transitions at LHCb

Albert Puig (EPFL) on behalf of the LHCb collaboration


LHC seminar

Photon polarization in b→sγ transitions at LHCb

Albert Puig (EPFL) on behalf of the LHCb collaboration

Rare B decays

- FCNC with $\Delta F=1$ are forbidden at tree level in the SM, so they proceed through loop (box, penguin) diagrams
 - In extensions of the SM, these loop processes may receive contributions from new virtual particles

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C_i' O_i') + h.c.$$

- Rare decays can be used for indirect searches of New Physics
 - Highly suppressed in the SM
 - Highly sensitive to NP effects

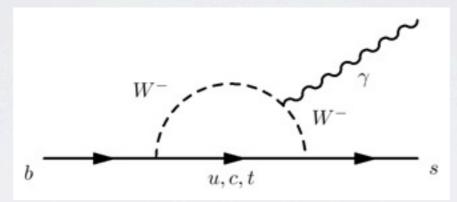
Radiative B decays

- Rare penguin FCNC transitions with a final-state (real) photon
- Discovered by CLEO in 1993 (PRL 71.674)

VOLUME 71, NUMBER 5

PHYSICAL REVIEW LETTERS

2 AUGUST 1993

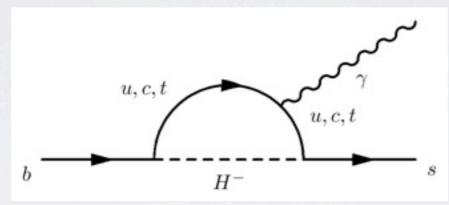

Evidence for Penguin-Diagram Decays: First Observation of $B \to K^*(892)\gamma$

Studied extensively by CLEO, BaBar, Belle and LHCb

RPP#	Mode	PDG2012 Avg.	BABAR	Belle	CLEO	CDF	LHCb	New Avg.	IFAC DDafar	DO
310	$K^0 \eta \gamma$	7.6 ± 1.8	$7.1^{+2.1}_{-2.0} \pm 0.4$	$8.7^{+3.1+1.9}_{-2.7-1.6}$				$7.6^{+1.8}_{-1.7}$	IFAG BRs for	R_0
311	$K^0 \eta' \gamma$	< 6.4	< 6.6	< 6.4				< 6.4		
312	$K^0 \phi \gamma$	2.7 ± 0.7	< 2.7	$2.74 \pm 0.60 \pm 0.32$				2.74 ± 0.68		
313	$K^+\pi^-\gamma$ §	4.6 ± 1.4		$\begin{array}{r} 2.74 \pm 0.60 \pm 0.32 \\ 4.6^{+1.3+0.5}_{-1.2-0.7} \end{array}$				4.6 ± 1.4		
314	$K^{*0}\gamma$	43.3 ± 1.5	$44.7 \pm 1.0 \pm 1.6$	$40.1 \pm 2.1 \pm 1.7$	$45.5^{+7.2}_{-6.8} \pm 3.4$			43.3 ± 1.5		
315	$K^{*}(1410)^{0}\gamma$	< 130		< 130	-010			< 130		
316	$K^{+}\pi^{-}\gamma$ (N.R.) §	< 2.6		< 2.6				< 2.6		
318	$K^0\pi^+\pi^-\gamma$	19.5 ± 2.2	$18.5 \pm 2.1 \pm 1.2 ~\dagger$	$24 \pm 4 \pm 3 \ddagger$				19.5 ± 2.2		
319	$K^+\pi^-\pi^0\gamma$	41 ± 4	$40.7 \pm 2.2 \pm 3.1 \ddagger$					40.7 ± 3.8		
320	$K_{1}^{0}(1270)\gamma$	< 58		< 58				< 58		
321	$K_{1}^{0}(1400)\gamma$	< 12		< 15				< 15		
322	$K_{2}^{*}(1430)^{0}\gamma$	12.4 ± 2.4	$12.2 \pm 2.5 \pm 1.0$	$13 \pm 5 \pm 1$				12.4 ± 2.4		
324	$K_{3}^{*}(1780)^{0}\gamma$	< 83		< 83				< 83		
326	POY	0.86 ± 0.15	$0.97^{+0.24}_{-0.22} \pm 0.06$	$0.78^{+0.17+0.09}_{-0.16-0.10}$	< 17			$0.86^{+0.15}_{-0.14}$		
328	wy	$0.44^{+0.18}_{-0.16}$	$\begin{array}{c} 0.97\substack{+0.24\\-0.22}\pm0.06\\ 0.50\substack{+0.27\\-0.23}\pm0.09 \end{array}$	$< 83 \\ 0.78^{+0.17+0.09}_{-0.16-0.10} \\ 0.40^{+0.19}_{-0.17} \pm 0.13$	< 9.2			$< 83 \\ 0.86^{+0.15}_{-0.14} \\ 0.44^{+0.18}_{-0.16}$		
329	<i>\$7</i>	< 0.85	< 0.85		< 3.3			< 0.85		HFAG Ac
Lat	K*0		10 1 0 00	0.1010.0010.0	-					
314	K**	$\gamma = -0$.	16 ± 0.23	$-0.16 \pm 0.22 \pm 0.0$	7				$0.008 \pm 0.017 \pm 0.009$	0.007 ± 0.019

Radiative B decays

- Access to possible NP through the virtual loop (2HDM, SUSY...)
 - Transitions especially sensitive to NP in the $C_{7\gamma}$ coefficient

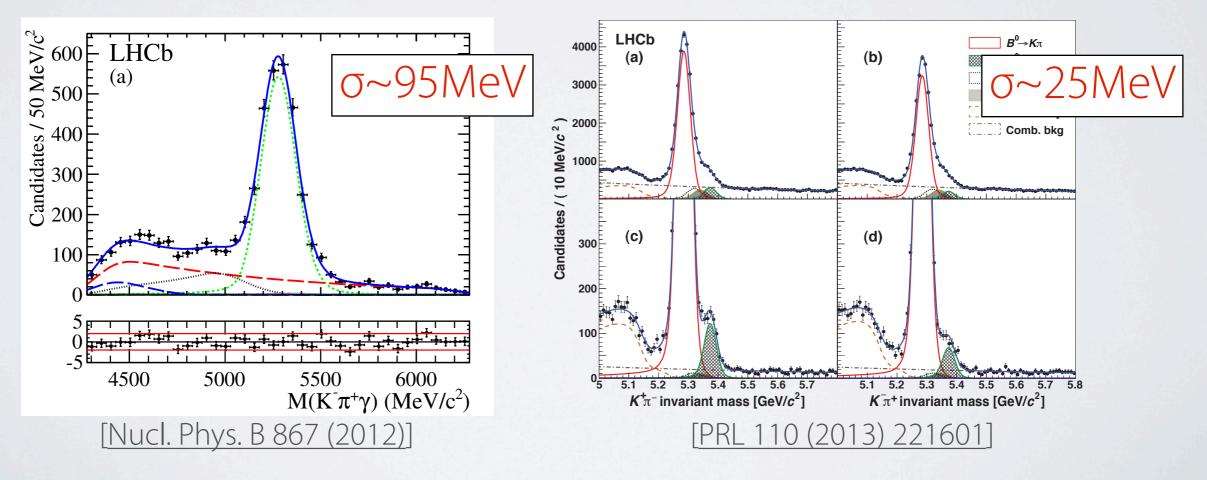


electromagnetic
 penguin operator

- Exclusive decays difficult from the theoretical point of view due to form factor
 - Find form-factor free observables, such as CP and isospin asymmetries
- Photon polarization as test of the SM

Radiative B decays

- Access to possible NP through the virtual loop (2HDM, SUSY...)
 - Transitions especially sensitive to NP in the $C_{7\gamma}$ coefficient



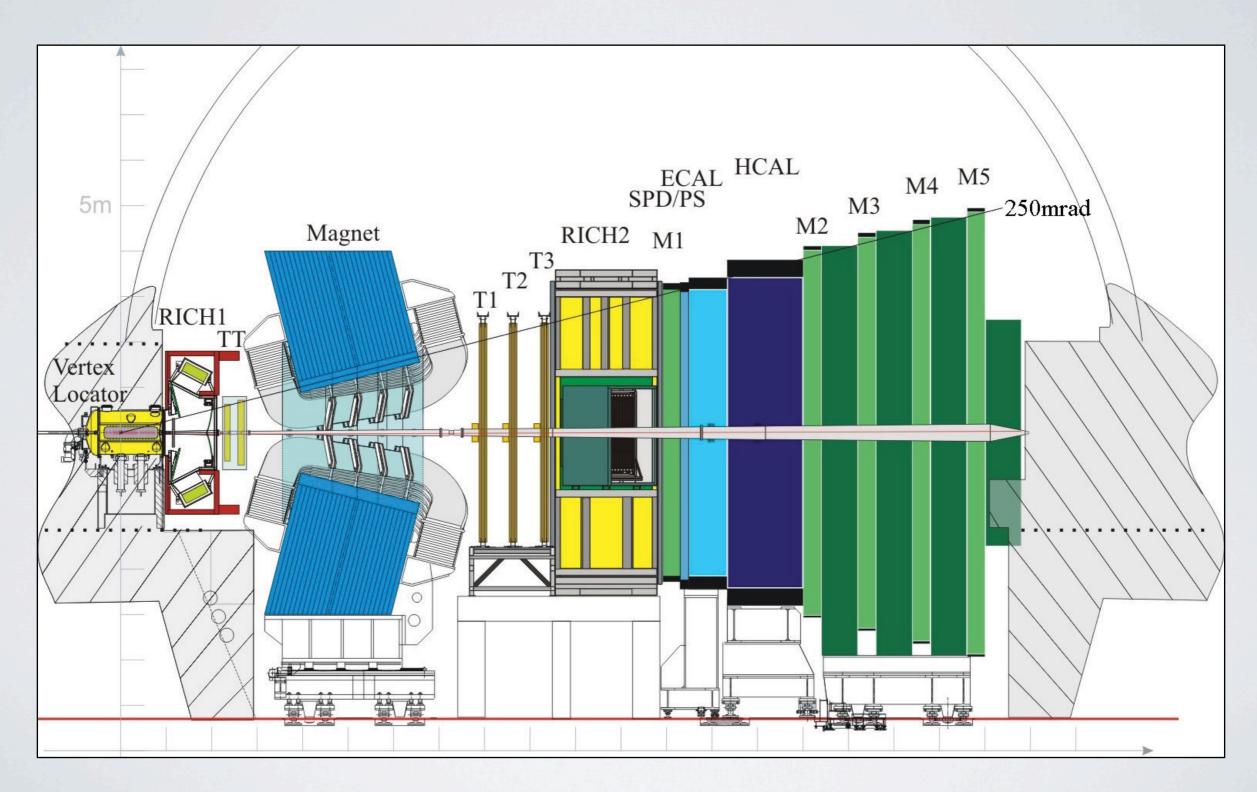
electromagnetic
 penguin operator

- Exclusive decays difficult from the theoretical point of view due to form factor
 - Find form-factor free observables, such as CP and isospin asymmetries
- Photon polarization as test of the SM

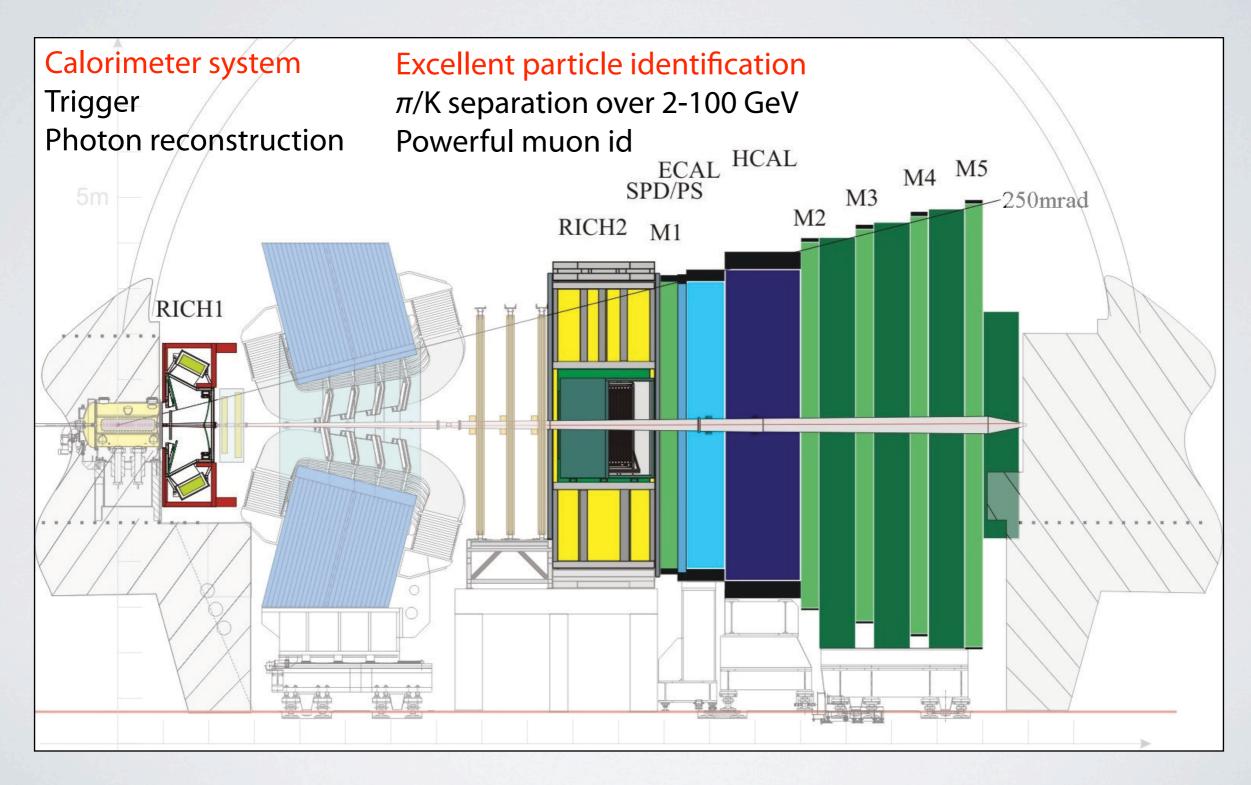
Challenges for radiative decays

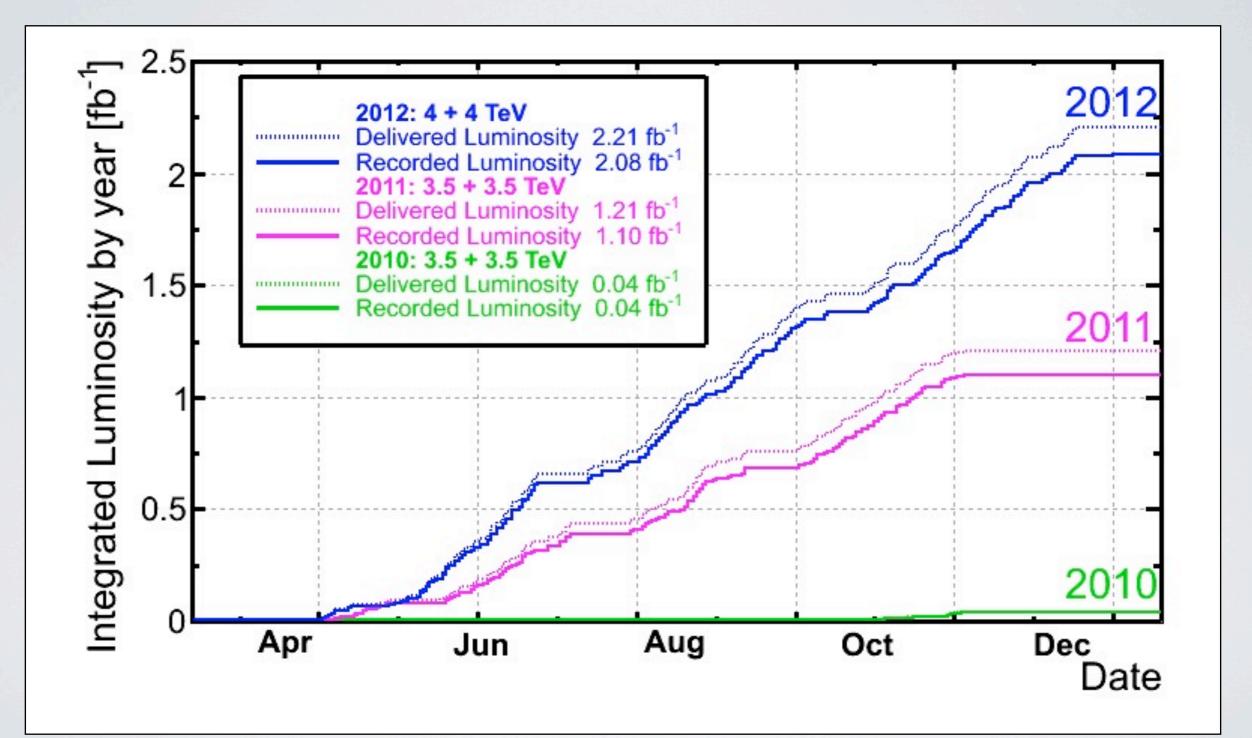
- Distinct experimental signature with a high E_T photon
 - Large levels of background are expected in a pp machine
- Mass resolution dominated by photon reconstruction

LHC seminar


Photon polarization in b→sγ transitions at LHCb

Albert Puig (EPFL) on behalf of the LHCb collaboration


The LHCb experiment


The LHCb experiment

The LHCb experiment

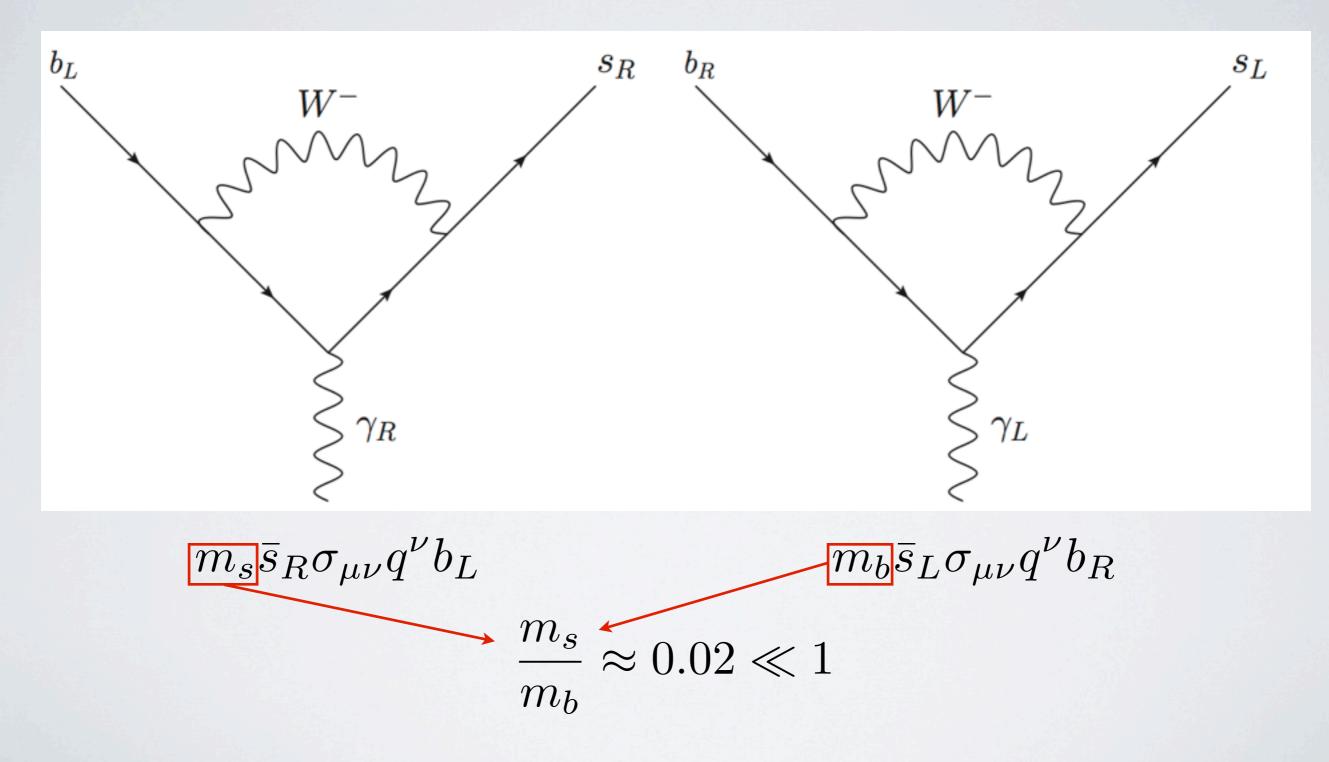
LHCb Run-I summary

LHC seminar

[arXiv:1402.6852] , submitted to PRL

Photon polarization in b→sγ transitions at LHCb

Albert Puig (EPFL) on behalf of the LHCb collaboration


Photon polarization in the SM

• The $b \rightarrow s\gamma$ process has a particular structure in the SM

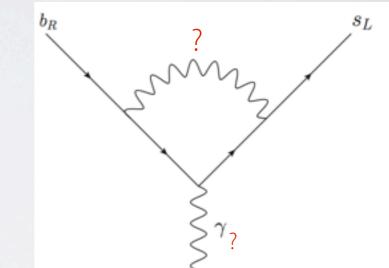
$$\bar{s}\Gamma(b\to s\gamma)_{\mu}b = \frac{e}{(4\pi)^2} \frac{g^2}{2M_W^2} V_{ts}^* V_{tb} F_2 \bar{s}i\sigma_{\mu\nu}q^{\nu} \left(m_b \frac{1+\gamma_5}{2} + m_s \frac{1-\gamma_5}{2}\right)b$$

- The W boson couples only left-handedly
- The requirement of a chirality flip leads to left-handed photon dominance

Photon polarization in the SM

Photon polarization in the SM

 The chiral structure of the b→sy process and the fact that the W couples only left-handedly causes the photons to be (almost completely) circularly polarized


$$\mathcal{O}_{7\gamma} = \frac{e}{16\pi^2} m_b \bar{s}_L \sigma_{\mu\nu} F^{\mu\nu} b_R$$

$$b o s \gamma_L$$

 $\bar{b} o \bar{s} \gamma_R$

- Never confirmed to high precision!
- QCD corrections coming from C₂ are expected to be in the 1-10% range [<u>Bečirević et al</u>]

And beyond the SM?

- Several NP models introduce right-handed currents
- New particles can change the chirality inside the loop, producing chiral enhancement
 - *m_t/m_b* from LRSM [Babu et al]
 - *m*_{SUSY}/*m*_b in SUSY with δ_{RL} mass insertions [Gabbiani et al]

- Still "large" room for NP despite the constraints coming from B_s oscillation parameters, $B_s \rightarrow \mu\mu$...
 - New penguins around the corner?

Measuring the polarization

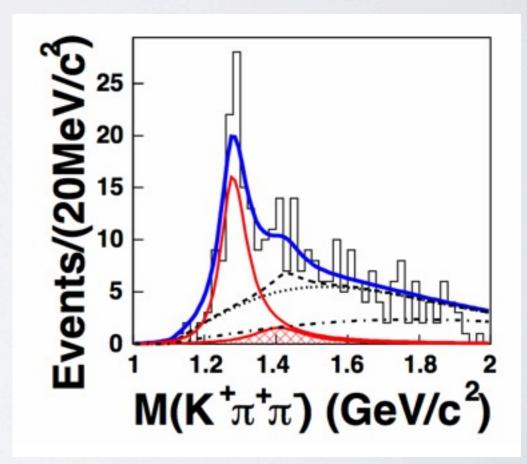
- Time-dependent analyses of $B_{(s)} \rightarrow f^{CP}\gamma$, e.g., $B_s \rightarrow \varphi\gamma$ and $B^0 \rightarrow K_s \pi^0 \gamma$
- Transverse asymmetry in $B^0 \rightarrow K^*/^+/^-$ (pollution from C_9 and C_{10})
- Angular distribution of radiative decays with 3 charged tracks in the final state, e.g., $B \rightarrow K \pi \pi \gamma$
- *b*-baryons: $\Lambda_b \rightarrow \Lambda^{(*)} \gamma, \Xi_b \rightarrow \Xi^{(*)} \gamma$

Complementary approaches

[Bečirević et al]

s λ, (a) (b) $B
ightarrow K_S \pi^0 \gamma$ $B \rightarrow K_1 \gamma$ 0.4 -0.40.2 $[m[C_{\gamma\gamma}^{\prime(NP)}/C_{\gamma\gamma}^{(SM)}]$ $[m[C_{7\gamma}^{\prime (NP)}/C_{7\gamma}^{(SM)}]$ 0.0 -0.6 -0.2-0.4-1-1-0.8-0.6-2 -2 -2b -2 2 2 $^{-1}$ 0 -0.8 $^{-1}$ 0 1 1 $\operatorname{Re}[C_{7\gamma}^{\prime\,(\mathrm{NP})}/C_{7\gamma}^{(\mathrm{SM})}]$ $\operatorname{Re}[C_{7\gamma}^{\prime\,(\mathrm{NP})}/C_{7\gamma}^{(\mathrm{SM})}]$ $A_T^{(im)}$ $B
ightarrow K^* \ell^+ \ell^-$ (c) $B
ightarrow K^* \ell^+ \ell^-$ (d) 0.8 0.80.6 0.6 $\operatorname{Im}[C_{j\gamma}^{(NP)}/C_{j\gamma}^{(SM)}]$ $\operatorname{Im}[C_{\gamma}^{(NP)}/C_{\gamma}^{(SM)}]$ 0.4 0.4 0.2 0.2 0 0 -0.2-0.2-1 $^{-1}$ -0.4-0.4-0.6-0.6-2<u>|_</u>__2 -2<u>|__</u>__2 -0.8-0.82 2 -1-10 1 0 1 $Re[C_{7\gamma}^{\prime (NP)}/C_{7\gamma}^{(SM)}]$ $Re[C_{7\gamma}^{\prime (NP)}/C_{7\gamma}^{(SM)}]$

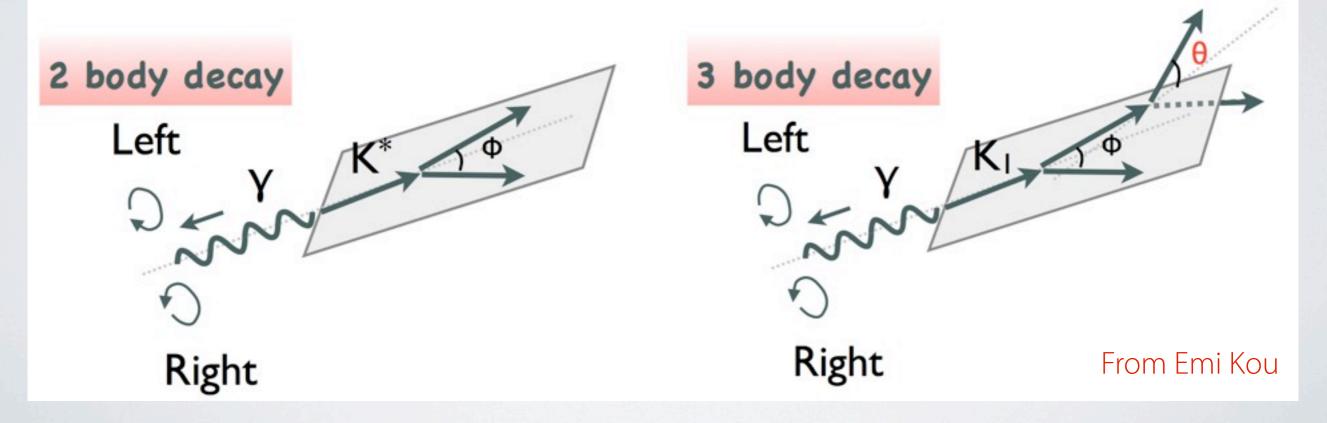
Measuring the polarization


- Time-dependent analyses of $B_{(s)} \rightarrow f^{CP}\gamma$, e.g., $B_s \rightarrow \varphi\gamma$ and $B^0 \rightarrow K_s \pi^0 \gamma$
- Transverse asymmetry in $B^0 \rightarrow K^*/+/$ (pollution from C_9 and C_{10})
- Angular distribution of radiative decays with 3 charged tracks in the final state, e.g., $B \rightarrow K \pi \pi \gamma$
- *b*-baryons: $\Lambda_b \rightarrow \Lambda^{(*)} \gamma, \Xi_b \rightarrow \Xi^{(*)} \gamma$

$B \rightarrow K \pi \pi \gamma$ in Belle and BaBar

- Belle observed $B \rightarrow K_1(1270) + \gamma$ and BaBar $B \rightarrow K_2^*(1430) + \gamma$
- Both BaBar and Belle have measured the inclusive BR

$K_1(1270)^+\gamma$	$(4.3 \pm 1.2) \times 10^{-5}$
$K_1(1400)^+\gamma$	$< 1.5 \times 10^{-5}$
$K_{2}^{*}(1430)^{+}\gamma$	$(1.45 \pm 0.43) \times 10^{-5}$
$K^+\pi^+\pi^-\gamma$	$(2.76 \pm 0.18) \times 10^{-5}$
$K^0\pi^+\pi^0\gamma$	$(4.5 \pm 0.52) \times 10^{-5}$


Belle, [<u>Nishida et al</u>] (2002) Belle, [<u>Yang et al</u>] (2005) BaBar, [<u>Aubert et al</u>] (2007)

Why 3 charged particles?

 Three tracks is the minimum needed to build a *P*-odd triple product proportional to the photon polarization using the final state momenta

 $ec{p_\gamma} \cdot (ec{p_1} imes ec{p_2})$ changes sign with photon helicity

Interference needed!

- The decay amplitude is required to have a non trivial phase due to final state interactions in order to preserve *T*
 - Knowledge of this phase is required to interpret measurements in terms of photon polarization
- In the case of $K\pi\pi$ final states, this means
 - Interference between two intermediate K*π states with different charges (isospin-related amplitudes) charges (isospin-related amplitudes)
 - Interference between intermediate $K^*\pi$ and ρK amplitudes
 - Interference between different partial waves into $K^*\pi$ or ρK

Photon polarization in $B \rightarrow K_{res}\gamma$

• If we consider $B \to K_{res}^{(i)} \gamma$ we can define the **photon** polarization as $c_{L(R)}^{(i)} \equiv A(B \to K_{\text{res}}^{(i)} \gamma_{L(R)})$ weak amplitudes

$$\lambda_{\gamma}^{(i)} = \frac{|c_R| - |c_L|}{|c_R^{(i)}|^2 + |c_L^{(i)}|^2}$$

 $(i)_{12}$

 It can be shown that photon polarization is independent of the K resonance and can be expressed as [Gronau et al]

$$\frac{|c_R^{(i)}|}{|c_L^{(i)}|} = \frac{|C_{7R}|}{|C_{7L}|} \Rightarrow \lambda_{\gamma}^{(i)} = \frac{|C_{7R}|^2 - |C_{7L}|^2}{|C_{7R}|^2 + |C_{7L}|^2} \equiv \lambda_{\gamma}$$

+1 for \overline{b} and -1 for b

Photon polarization in $B \rightarrow K_{res} \gamma$

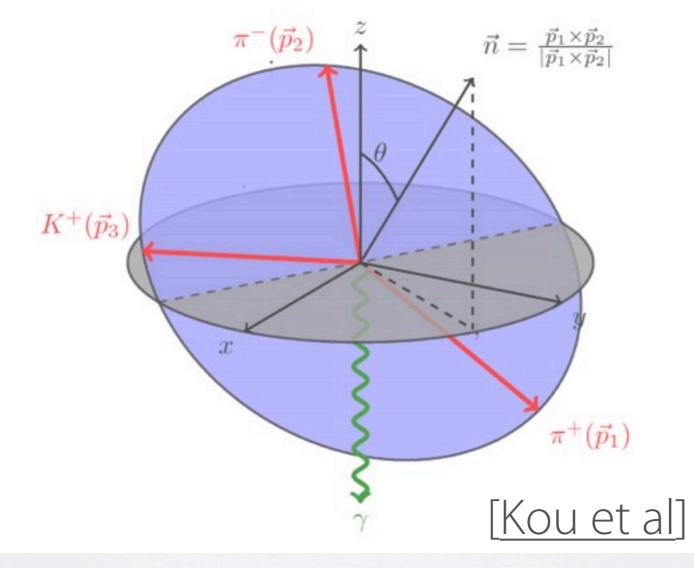
strong decay

amplitudes of the Kres

In the case of overlapping resonances

$$d\Gamma(B \to K\pi\pi\gamma) = \left|\sum_{i} \frac{c_R^{(i)} A_R^{(i)}}{s - M_i^2 - iM - i\Gamma_i}\right|^2 + \left|\sum_{i} \frac{c_L^{(i)} A_L^{(i)}}{s - M_i^2 - iM - i\Gamma_i}\right|^2$$

so (introducing the expression of the weak amplitudes) $d\Gamma(B \to K\pi\pi\gamma) \propto (|\mathcal{A}_R|^2 + |\mathcal{A}_L|^2) + \lambda_{\gamma}(|\mathcal{A}_R|^2 - |\mathcal{A}_L|^2)$


It's interesting to note that

$$P_{\gamma} = \frac{\mathrm{d}\Gamma(B \to K\pi\pi\gamma_R) - \mathrm{d}\Gamma(B \to K\pi\pi\gamma_L)}{\mathrm{d}\Gamma(B \to K\pi\pi\gamma_R) + \mathrm{d}\Gamma(B \to K\pi\pi\gamma_L)}$$

is only equal to λ_{γ} in the case of one resonance

Angular distribution in $B \rightarrow K \pi \pi \gamma$

• The photon polarization can be inferred from the polarization of the *K*

Angular distribution in $B \rightarrow K \pi \pi \gamma$

• The amplitude of one *K* resonance decay can be described by the helicity amplitude J_{μ} polarization contains all Dalitz

$$A_{L(R)}^{(i)}(s, s_{13}, s_{23}, \cos \theta) = \epsilon_{K, L(R)}^{\text{vector}} \mathcal{J}_{\mu}$$

information

Considering only one (1+) intermediate resonance

$$\frac{\mathrm{d}\Gamma(K_{L(R)} \to K\pi\pi)}{\mathrm{d}s\,\mathrm{d}s_{23}\,\mathrm{d}\cos\theta} \propto \frac{1}{4} |\vec{\mathcal{J}}|^2 (1 + \cos^2\theta) \mp \frac{1}{2}\cos\theta\,\mathrm{Im}\left[\vec{n}\cdot(\vec{\mathcal{J}}\times\vec{\mathcal{J}}^*)\right]$$

and therefore [Kou et al] [Gronau et al] interference!

$$\frac{\mathrm{d}\Gamma(B \to K_{\mathrm{res}}\gamma \to K\pi\pi\gamma)}{\mathrm{d}s\,\mathrm{d}s_{13}\,\mathrm{d}s_{23}\,\mathrm{d}\cos\theta} \propto \frac{1}{4}|\vec{\mathcal{J}}|^2(1+\cos^2\theta) + \lambda_{\gamma}\frac{1}{2}\cos\theta\,\mathrm{Im}\left[\vec{n}\cdot(\vec{\mathcal{J}}\times\vec{\mathcal{J}}^*)\right]$$

But life is not so beautiful

Interference between 1+, 1-, 2+ resonances [Gronau et al]

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}s_{13}\,\mathrm{d}s_{23}\,\mathrm{d}\cos\theta} = |A|^2 \left\{ \frac{1}{4} |\vec{\mathcal{J}}|^2 (1+\cos^2\theta) + \frac{1}{2}\lambda_\gamma \operatorname{Im}\left[\vec{n}\cdot(\vec{\mathcal{J}}\times\vec{\mathcal{J}}^*)\right]\cos\theta \right\} + \\ + |B|^2 \left\{ \frac{1}{4} |\vec{\mathcal{K}}|^2 (\cos^2\theta + \cos^22\theta) + \frac{1}{2}\lambda_\gamma \operatorname{Im}\left[\vec{n}\cdot(\vec{\mathcal{K}}\times\vec{\mathcal{K}}^*)\right]\cos\theta\cos2\theta \right\} + |C|^2 \frac{1}{2}\sin^2\theta + \\ + \left\{ \frac{1}{2} (3\cos^2\theta - 1)\operatorname{Im}\left[AB^*\vec{n}\cdot(\vec{\mathcal{J}}\times\vec{\mathcal{K}}^*)\right] + \lambda_\gamma \operatorname{Re}\left[AB^*\vec{n}\cdot(\vec{\mathcal{J}}\cdot\vec{\mathcal{K}}^*)\right]\cos^3\theta \right\} \\ \text{need to know } \mathcal{J} \text{ and } \mathcal{K}!$$

• It can be shown that λ_{γ} goes with odd powers of $\cos\theta$

$$\frac{\mathrm{d}\Gamma(\sum B \to K_{\mathrm{res}}\gamma \to P_1P_2P_3\gamma)}{\mathrm{d}s\,\mathrm{d}s_{23}\,\mathrm{d}\cos\theta} \propto \sum_{j=\mathrm{even}} a_j(s_{13},s_{23})\,\cos^j\theta + \lambda_\gamma \sum_{j=\mathrm{odd}} a_j(s_{13},s_{23})\,\cos^j\theta$$

Up-down asymmetry

 We can exploit the structure of the decay rate and define the up-down asymmetry

$$\mathcal{A}_{\rm UD} \equiv \frac{\int_0^1 \mathrm{d}\cos\theta \, \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} - \int_{-1}^0 \mathrm{d}\cos\theta \, \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta}}{\int_{-1}^1 \mathrm{d}\cos\theta \, \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta}} = C\lambda_{\gamma}$$

where C takes into account the integral over the Dalitz plot and the angular distribution

• This asymmetry is expected to be $\sim 0.3\lambda_{\gamma}$ in isolated neutral K_1 decays and $\sim 0.1\lambda_{\gamma}$ in charged ones (less interference)

$B^{\pm} \rightarrow K^{\pm} \pi^{\mp} \pi^{\pm} \gamma$ at LHCb

- In LHCb we have studied the charged mode $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ (and charge conjugate)
 - Inclusive study with $K\pi\pi$ system mass in the [1.1, 1.9] GeV/ c^2 range
- Analysis performed in the full data set recorded by LHCb in 2011 and 2012, corresponding to 3/fb
- Preliminary conference note inclusing only 2012 data and with simple counting approach was shown at EPS 2013 [LHCb-CONF-2013-009]

Analysis strategy

- B candidates mass fit
- Assessment of the Клл mass spectrum
- Angular study
 - Provide angular distribution to help theory calculations
- Determination of up-down asymmetry
 - Obtain significance with respect to the no-polarization scenario

Event selection

B+

р

 K^+

• Exploit the special features of B decays

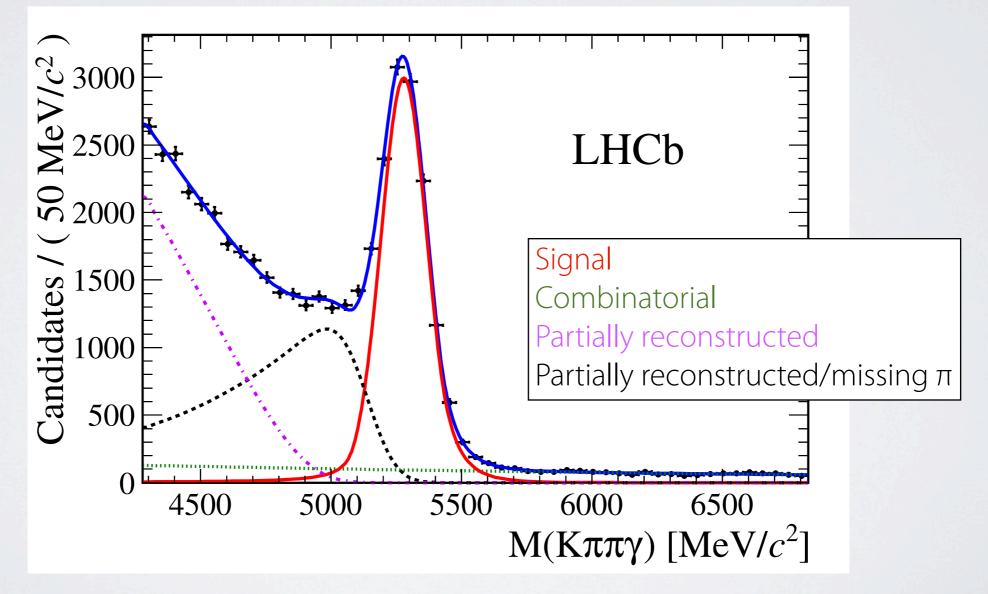
- Selection criteria:
 - High E_T photon (>3.0 GeV)
 - Multivariate tool with kinematical variables
 - Charged particle identification
 - Photon identification (separation from charged e-m particles and other neutral e-m particles)

Backgrounds

- Combinatorial (exponential)
- Partially reconstructed background (Argus ⊗ Gaussian)
 - Missing π , $B \rightarrow K \pi \pi \eta (\rightarrow \gamma \gamma)$ (negligible) and general partial.
- · Peaking backgrounds (suppressed with specific cuts)
 - $B^+ \rightarrow \overline{D}{}^0 (\rightarrow K^+\pi^-\pi^0) \pi^+, B^+ \rightarrow \overline{D}{}^{*0} (\overline{D}{}^0 (\rightarrow K^+\pi^-)\gamma) \pi^+ \text{ and } B^+ \rightarrow K^{*+} (\rightarrow K^+\pi^0) \pi^+\pi^-$
- Contamination from neutral $B^0 \rightarrow K_1(1270)^0 \gamma$ (negligible)
- Crossfeed from $B^+ \rightarrow \pi\pi\pi\gamma$ (suppressed with PID)

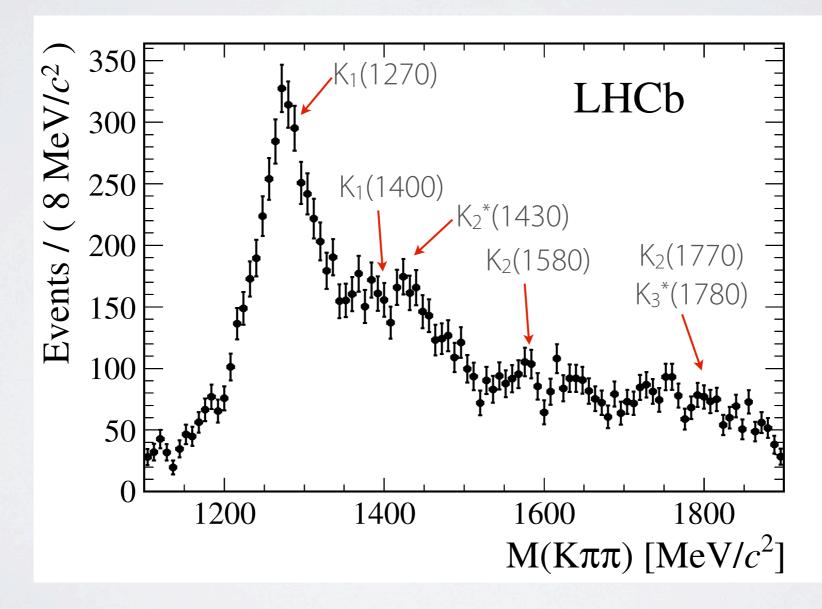
Backgrounds

included in mass fit

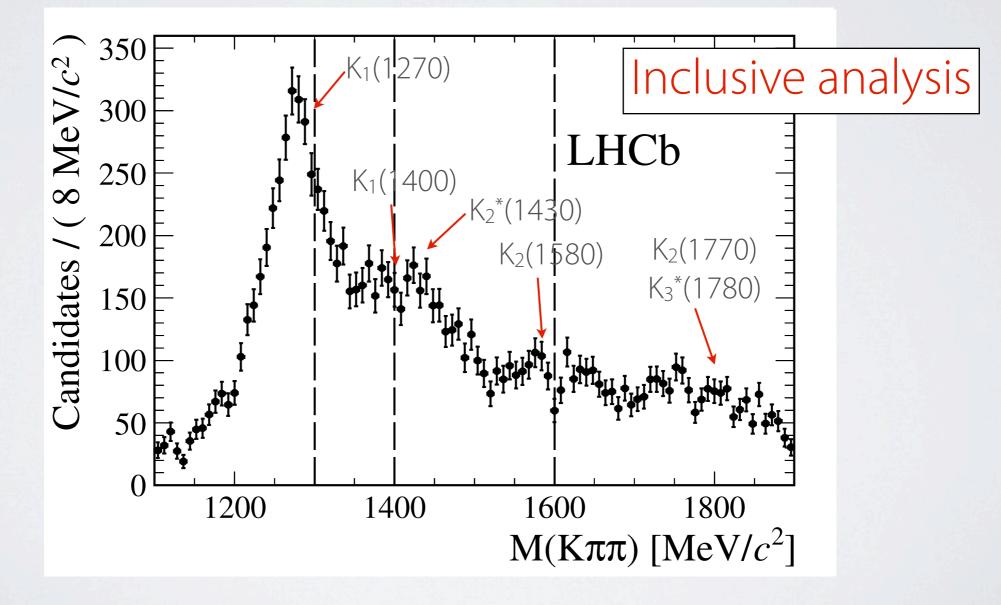

- Combinatorial (exponential)
- Partially reconstructed background (Argus ⊗ Gaussian)
 - Missing π , $B \rightarrow K \pi \pi \eta (\rightarrow \gamma \gamma)$ (negligible) and general partial.
- Peaking backgrounds (suppressed with specific cuts)
 - $B^+ \rightarrow \overline{D}{}^0 (\rightarrow K^+\pi^-\pi^0) \pi^+, B^+ \rightarrow \overline{D}{}^{*0} (\overline{D}{}^0 (\rightarrow K^+\pi^-)\gamma) \pi^+ \text{ and } B^+ \rightarrow K^{*+} (\rightarrow K^+\pi^0) \pi^+ \pi^-$
- Contamination from neutral $B^0 \rightarrow K_1(1270)^0 \gamma$ (negligible)
- Crossfeed from $B^+ \rightarrow \pi \pi \pi \gamma$ (suppressed with PID)

Mass fit

- Unbinned maximum likelihood fit to the invariant mass of the B candidates
- Simultaneously fit 2011 and 2012 to account for slightly different calorimeter performance
 - Share shape parameters except for the B mass resolution
 - Different background contamination
- Signal shape fixed from MC
- Background shapes partially fixed from MC
 - Free combinatorial and partially reconstructed background tail


Mass distribution

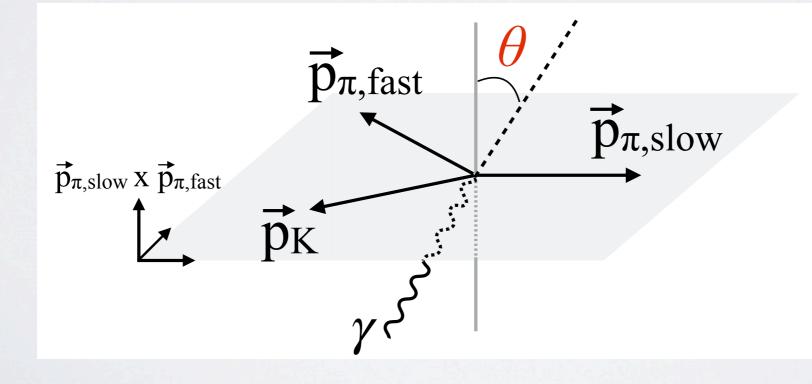
 Observe ~14000 signal events in the [1.1,1.9] GeV/c² Kππ mass region


Background-subtracted Kππ mass spectrum

- Many (unclear) contributions in the *K*ππ mass spectrum
 - Impossible to separate the resonances without full Dalitz analysis

Background-subtracted Kππ mass spectrum

- Many (unclear) contributions in the *K*ππ mass spectrum
 - Impossible to separate the resonances without full Dalitz analysis



Angle definition

• In order to avoid cancellations due to symmetries, neutral $K\pi\pi$ combinations requiere a change of the sign of $\cos\theta$ according to s_{12} and s_{13}

$$\vec{n} = \vec{p}_{\pi,\text{slow}} \times \vec{p}_{\pi,\text{fast}}$$

The same convention is used for consistency

Angle definition

- The sign of the λ_{γ} parameter changes with the charge of the *B* meson (positive for *B*⁻ and negative for *B*⁺)
- When putting together the data, take the change of sign by taking into account the sign of the charge of the *B* candidate

$$\cos\hat{\theta} = \operatorname{sign}(\operatorname{charge} B^{\pm})\cos\theta$$

Angular distribution

- Angular distributions for each region of $K\pi\pi$ mass are obtained as a simultaneous fit of the mass of the B candidates in bins of $\cos\hat{\theta}$
 - Used 20 bins in the angular variable
 - All fit parameters shared
- Yields for each bin are corrected with the selection acceptance and then normalized to the total yield

Systematic uncertainties

- Effect of bin migration, evaluated with pseudo experiments
 - Use angle-dependent resolution
 - Determined as a covariance matrix between bins
- Fit model, evaluated by testing alternative modelizations
- Parameters fixed from simulation, including acceptance, evaluated using simulated pseudo experiments

Systematic uncertainties

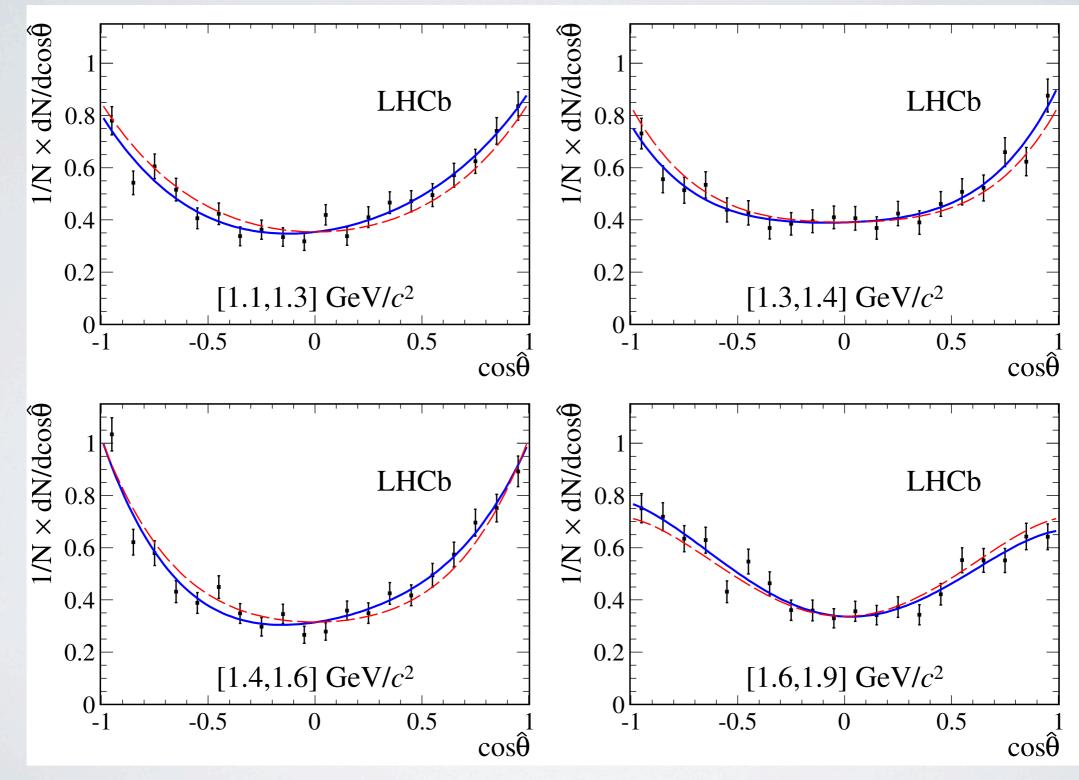
Largest systematic

- Effect of bin migration, evaluated with pseudo experiments
 - Use angle-dependent resolution
 - Determined as a covariance matrix between bins
- Fit model, evaluated by testing alternative modelizations
- Parameters fixed from simulation, including acceptance, evaluated using simulated pseudo experiments
 Strong correlations between bins

Angular fit

• Angular distributions for each region are fitted with a combination of Legendre polynomials up to order 4

$$f(\cos\hat{\theta}; c_0 = 0.5, c_1, c_2, c_3, c_4) = \sum_{i=0}^{4} c_i L_i(\cos\hat{\theta})$$


- A χ^2 fit is performed taking into account the full statistical and systematic covariance matrices
- The up-down asymmetry is determined with the relation

$$\mathcal{A}_{ud} = \frac{c_1 - c_3/4}{2c_0}$$

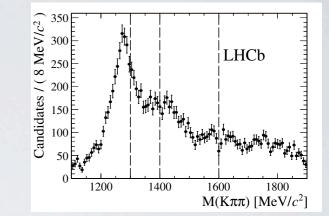
Angular fit results

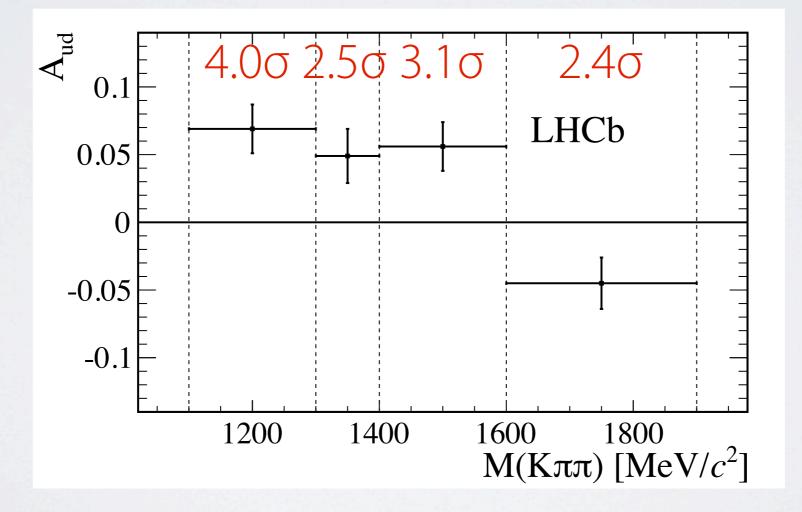
Nominal fit

No odd components

Angular fit coefficients

 The coefficients of the angular fit are obtained for each of the four *K*ππ mass regions


 $(x10^{-2})$


	[1.1, 1.3]	[1.3, 1.4]	[1.4, 1.6]	[1.6, 1.9]
c_1	$6.3 {\pm} 1.7$	$5.4 {\pm} 2.0$	4.3 ± 1.9	-4.6 ± 1.8
c_2	31.6 ± 2.2	$27.0 {\pm} 2.6$	43.1 ± 2.3	$28.0{\pm}2.3$
c_3	$-2.1{\pm}2.6$	$2.0{\pm}3.1$	-5.2 ± 2.8	$-0.6{\pm}2.7$
c_4	$3.0{\pm}3.0$	6.8 ± 3.6	8.1 ± 3.1	-6.2 ± 3.2
$\overline{\mathcal{A}_{ ext{UD}}}$	$6.9{\pm}1.7$	$4.9{\pm}2.0$	5.6 ± 1.8	-4.5 ± 1.9

 We expect that these results prove to be a useful input for theorists

Up-down asymmetry results

 Four independent up-down asymmetries are obtained

Photon polarization from Aud?

• The up-down asymmetry is proportional to λ_{γ}

$$\mathcal{A}_{\rm UD} \equiv \frac{\int_0^1 \mathrm{d} \cos \theta \, \frac{\mathrm{d} \Gamma}{\mathrm{d} \cos \theta} - \int_{-1}^0 \mathrm{d} \cos \theta \, \frac{\mathrm{d} \Gamma}{\mathrm{d} \cos \theta}}{\int_{-1}^1 \mathrm{d} \cos \theta \, \frac{\mathrm{d} \Gamma}{\mathrm{d} \cos \theta}} = C \lambda_{\gamma}$$

- But what is the proportionality constant?
- Combined work between theory and experiment is needed, but right now it's not possible to translate a measurement of $A_{\rm UD}$ into a measurement of λ_{γ}
 - Obtain the significance of the up-down asymmetry with respect of the $\lambda_{\gamma} = 0$ scenario

Aud significance

- Use the four independent up-down asymmetries to extract a combined significance with respect to the no-polarization scenario
- Up-down asymmetry is different from zero at 5.2σ

Aud significance

- Use the four independent up-down asymmetries to extract a combined significance with respect to the no-polarization scenario
- Up-down asymmetry is different from zero at 5.2σ

First observation of photon polarization in $b \rightarrow s\gamma$ transitions!

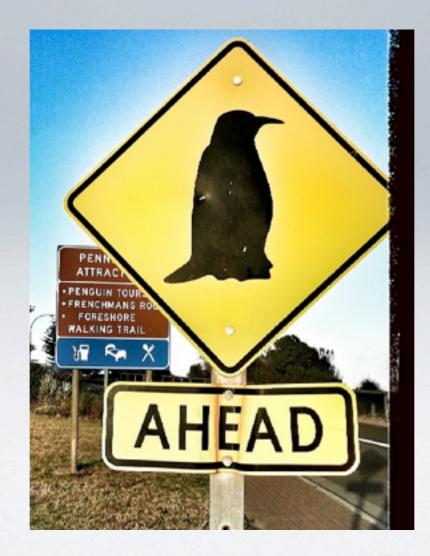
Cross checks

- Adding further orders in Legendre polynomials does not add information (extra parameters ~ 0)
 - Significance unchanged
- Further cross checks performed with counting experiment
 - Up-down asymmetries compatible
 - Lower significance (5.0σ)
 - Difference in significances with respect to the angular fit match expectations from pseudo experiments

Conclusions

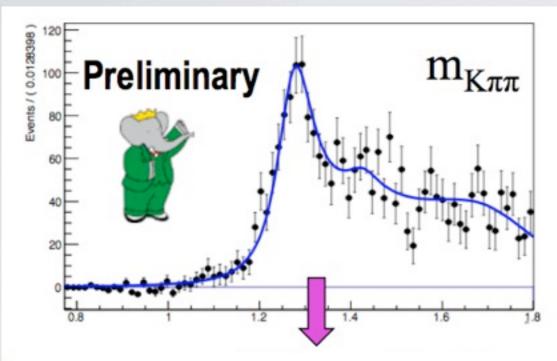
- LHCb has studied the $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ decay with its full available statistics of 3/fb
- The angular distribution of the photon with respect to the plane defined by the final state hadrons has been characterized for different regions of their invariant mass
 - Impossible to extract photon polarization without further input
 - Aim to provide a valuable input for theorists
- Photon polarization has been observed for the first time in $b \rightarrow s\gamma$ transitions

What about the future?


- Further explotation of the $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ decay requires either
 - Ability to control the *K*ππ mass spectrum in order to isolate certain resonances (to match theory papers)
 - Precise knowledge of the Knn J function, which could be obtained from a Dalitz analysis of $B^+ \rightarrow K^+ \pi^- \pi^+ J/\psi$
- Study of the neutral decay is more difficult in LHCb due to
 - Need for tagging in $B^0 \rightarrow K_S \pi^- \pi^+ \gamma$ (loss of efficiency)
 - Two neutral particles in the final state in $B^0 \rightarrow K^+ \pi^- \pi^0 \gamma$

What about the future?

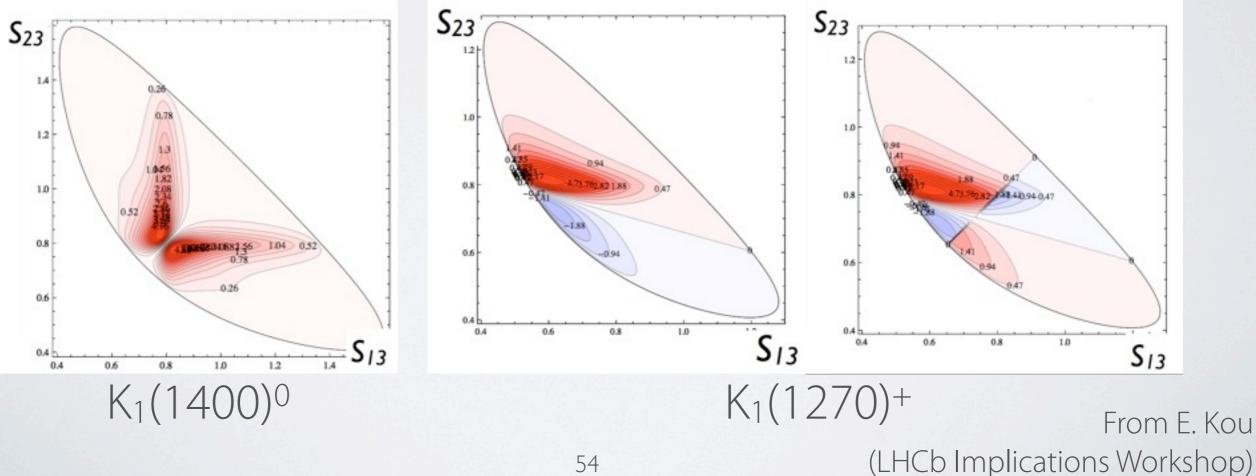
- LHCb can (and will) continue the study of the photon polarization through other paths
 - Proper time distribution of $B_s \rightarrow \varphi \gamma$
 - Angular distribution in $B^0 \rightarrow K^*e^+e^-$, already observed by LHCb [JHEP05(2013)159]
 - Angular distribution in $B^+ \rightarrow \varphi K^+ \gamma$
 - Radiative *b*-baryon decays: $\Lambda_b \rightarrow \Lambda^{(*)}\gamma$, $\Xi_b \rightarrow \Xi^{(*)}\gamma$
- Stay tuned!


Seen by LHCb! [Nucl. Phys. B 867 (2012)]

And remember, watch out for the penguins!

Backup

News on $B \rightarrow K\pi\pi\gamma$ from BaBar


Eli Ben-Haim

Moriond EW (March 16th 2014)

	Mode	$\mathcal{B}(B^+ \to \text{Mode}) \times \mathcal{B}(K_{\text{res}} \to K^+ \pi^+ \pi^-) \times 10^{-6}$	$\mathcal{B}(B^+ \to \text{Mode}) \times 10^{-6}$	PDG values (×10 ⁻⁶)
	Inclusive $B^+ \to K^+ \pi^+ \pi^- \gamma$		$27.2 \pm 1.0 \substack{+1.1 \\ -1.3}$	27.6 ± 2.2
Preliminary	$K_1(1270)^+\gamma$	$14.5^{+2.0+1.1}_{-1.3-1.2}$	$44.0^{+6.0}_{-4.0}{}^{+3.5}_{-3.7}\pm4.6$	43 ± 13
	$K_1(1400)^+\gamma$	$4.1^{+1.9+1.3}_{-1.2-0.8}$	$9.7^{+4.6+3.1}_{-2.9-1.8}\pm0.6$	< 15 CL= 90%
$K_{res} \rightarrow K^+ \pi^- \pi^+$	$K^*(1410)^+\gamma$	$9.7^{+2.1+2.4}_{-1.9-0.7}$	$23.8^{+5.2+5.9}_{-4.6-1.4}\pm2.4$	Ø
	$K_2^{\bullet}(1430)^+\gamma$	$1.5^{+1.2+0.9}_{-1.0-1.4}$	$10.4^{+8.7}_{-7.0}{}^{+6.3}_{-9.9}\pm0.5$	14 ± 4
	$K^{\bullet}(1680)^+\gamma$	$17.0^{+1.7+3.5}_{-1.4-3.0}$	$71.7^{+7.2+15}_{-5.7-13}\pm 5.8$	< 1900 CL= 90%

Angle convention

- In neutral decays, it is necessary to redefine the angle θ in order to avoid cancellations due to the symmetries of J with respect to the exchange of the two π
 - Not necessary in charged decays, but kept for consistency

