
Git Workflow

Anar Manafov, GSI Darmstadt	

2014-03-21

http://git-scm.com

Motivation

come up with a git workflow, which will provide	

• uninterruptible development,	

• a stable and releasable at any time master,	

• a multilevel protection against conflicts,	

• a delegation of conflicts resolution to authors,	

• a multilevel possibility to recover from errors/mistakes

before changes land into the master,	

• a clean history of the master branch without merge

commits and other unwanted garbage.

Requirements

• Contained development: Every task/feature MUST be
implemented on a separate branch. Basically each JIRA
ticket should be represented by at least one branch.	

• Only release managers are allowed to work on the central
master branch.	

• Cherry picking MUST not be used by any means. A good
use of branches should prevent the need of "git cherry-
pick".	

• DO NOT create very large repositories.	

• DO NOT commit large binary files.	

• DO NOT commit any file, which can be recreated or

which is generated automatically by your dev. environment.

Branches

• master	

• dev	

• featureX	

• RC	

• HotFix

Roles

• Release manager (r/w: MASTER, DEV, RC) 	

• Developer (r/w: FEATURE(s), HOT FIX;
read only: MASTER, DEV)

User Stories

���7

devFeature256

rebase

rebase

merge --ff-only

branch
DEVELOPER	

1.Create a feature branch;	

2.Develop on it. 	

3.Rebase regularly from the dev branch.	

4.Rebase before requesting to pull.	

5.Squash your commits before requesting to pull.	

6.Send a pull request.	

!

RELEASE MANAGER (can be a robot)	

1.Receive the pull request (email, voice or any other
method).	

2.Merge the commit using fast forward only!	

3.Git will abort merging if FF is not possible. In this
case reject the commit and ask developer to rebase
from dev and fix conflicts.

in this only REBASE

in this only MERGE with --ff-only

���8

dev

RELEASE MANAGER	

1.Choose the last commit, which should be in
the next release.	

2.Create a Release Candidate branch from that
commit.	

3.Start prerelease QA.	

4.RC is a feature freeze of the the product. Only
bug fixes are allowed.	

5.When QA gives the green light, merge the RC
branch into the master with —ff-only.	

6.Create a version tag based on a given master
commit.	

7.Dispose the RC branch

RC

master

Tag	

v1.0

Tag	

v1.1

merge --ff-only

rebase

Tag	

v1.1

in this only REBASE

in this only MERGE with --ff-only

���9

dev

Note:	

Here the workflow is the same like in case of usual
development, just with one difference that
developers work with the HotFix branch instead
of dev.	

At the end commits should be squashed and
merged into the master with FF.	

After that the master gets a new tag.	

Don’t forget to rebase the dev from the master so
that developers will get applied fixes as well.

HotFix

master

Tag	

v1.0

Tag	

v1.1

rebase

merge --ff-only Tag	

v1.2

in this only REBASE

in this only MERGE with --ff-only

a detailed doc: http://fairroot.gsi.de/?q=node/83

http://fairroot.gsi.de/?q=node/83

