Gt Workflow

@ git

http://git-scmn.com

Anar Manafov, GSI Darmstadt
2014-03-21

Motivation

come up with a git workflow, which will provide

* uninterruptible development,

* a stable and releasable at any time master,
e a multilevel protection against conflicts,

* a delegation of conflicts resolution to authors,

e a multilevel possibility to recover from errors/mistakes
before changes land into the master,

* a clean history of the master branch without merge
commits and other unwanted garbage.

Contalne

Reqguirements

d development: Every task/feature MUST be

implemented on a separate branch. Basically each JIRA
ticket should be represented by at least one branch.

Only release managers are allowed to work on the central
master branch.

@Rcir/ p

icking MUST not be used by any means. A good

use of branches should prevent the need of "git cherry-

DIck”.
DGHINC]
BONNC)]

[CreanE Vel d kg iEpies el iEs

- commit large binary files.

RO NO |

- commit any file, which can be recreated or

which Is generated automatically by your dev. environment.

Branches

master
dev
featureX
RC

Hotkix

Roles

g lcase manager (w: MASHRERHE SV

SRC cloper (e FEATIURIE(S)H SRS
sesleBe 7R SITER DV

User Stories

Feature256 dev
DIEVIELOIRIE

branch |.Create a feature branch;

2.Develop on it.

3.Rebase regularly from the dev branch.

4.Rebase before requesting to pull.

5.Squash your commits before requesting to pull.

6.5end a pull request.

rebase RELEASE MANAGER (can be a robot)

|.Recelve the pull request (emall, voice or any other
method).

& 2.Merge the commit using fast forward only!

3.Git will abort merging if FF is not possible. In this
v case reject the commit and ask developer to rebase
from dev and fix conflicts.

in this only MERGE with --ff-only

dev master

g
VARG,
RELEASE MANAGER

|.Choose the last commit, which should be In
the next release.

2.Create a Release Candidate branch from that
‘ commit.

3.5Start prerelease QA.

4.RC is a feature freeze of the the product. Only
bug fixes are allowed.

merge --ff-only
\ > @ 5.When QA gives the green light, merge the RC

RC branch into the master with —ft-only.
6.Create a version tag based on a given master
rebase -
commit.
D
/.Dispose the RC branch
v
in this only REBASE
R L L PR R 4
R 2

in this only MERGE with --ff-only 3

dev master

Tag
‘ v1.0

Note:

Here the workflow Is the same like in case of usual
development, just with one difference that

@ developers work with the HotFix branch instead
of dev.

At the end commits should be squashed and

merged into the master with FF
merge --ff-only

: _ After that the master gets a new tag.
HotFix

Don't forget to rebase the dev from the master so
that developers will get applied fixes as well.

in this only MERGE with --ff-only 9

VE Y Y
O ©
G- Rebase--4----------
Y Y)
O <—{v2.0 |
branch R
@ Q Y SRS Rebase--.---------.Q only fixes
? ? M 0
O -~Merge (--ff-only)>
? RC branch
--.<: Rebase--- < ------- Rebase ----------
O Q
@ — @ ---Merge (--ff-only)>> W Mer
N B B SRRl Rebase---------- ge-
' 4 < : G HotFix
T —{:v3 1)
Y \ 4
Feature X Feature 1 dev master

. ‘ \ Restricted Repository j
squash all commits

git rebase -i origin/dev

a detailed doc: http://fairroot.gsi.de/?g=node/83

http://fairroot.gsi.de/?q=node/83

