
First Phase Wrap up

Alessandra Forti

Antonio Perez-Calero Yzquierdo

08 April 2014

2

Multicore scheduling

● Single core and multicore jobs
will have to coexist in the
majority of sites.

● To allocate non dedicated
resources for multicore jobs
draining is required.

● As the majority of sites is
currently configured without
backfilling or reservations single
core jobs with higher priority
tend to occupy the freed slots
making draining a painful and
wasteful process until a
sufficiently big number of slot is
freed and a multicore job is at
the top of the queue.

Thomas Hartmann plots

● Creating mcore slots
● Conserving mcore slots

3

Atlas model

Thomas Hartmann plots

Inside a scheduler

CMS

Atlas

Atlas model considers the scheduling a site
problem and prefers to submit both single
core and multicore.

4

CMS model

Thomas Hartmann plots

Inside a scheduler

CMS

Atlas

CMS model would have all Vos agree on a
single pilot size. The aim is to preserve as
long as possible the slots that have been
assigned.

VO:1 job

5

Backfilling
● Jobs of lower priority are allowed to utilize the

reserved resources only if their prospective job end
(i.e. the declared wallclock usage) is before the start
of the reservation

● Most batch system are designed to do this
● job request entropy: there should be a distribution of jobs resources

requests in order to increase the likelihood of finding the right
"piece" to fill each temporary hole in draining WNs

● job running times estimates, so that the scheduler can make a
decision on whether it should run this job in that hole or not.

6

Most sites would like....

Thomas Hartmann plots

Inside a scheduler

CMS

Atlas

Without walltime high entropy of jobs so far
was enough to fix the problem. Multicore
require more organisation and backfilling
with a guesstimate of walltime is needed to
reduce gaps.

7

Reasons why there is no
walltime

● Inherent to the jobs themselves, as the instantaneous
luminosity and pile-up determine the complexity of events and
thus the job running time.

● This is different for analysis, MC production and data
reconstruction/reprocessing.

● There are mitigating tools in both experiments

● Variance in CPU power for WNs distributed across the grid
and also within sites.

● This may not be so much of a problem if the actual difference between
the fastest and slowest machines at a given site is not larger than 15-
20%.

● The main middleware never really worked.
● At most sites it doesn't pass the arguments to the batch system

8

 So far....

● Longer waiting times while
draining combined with short
jobs

● Short jobs (empty pilots
included) are disruptive
because they don't exploit the
slots freed.

Need to drain constantly

● Wavelike submission most
disruptive. Waste of CPU affected
by submission patterns.

T. Hartmann, A.Lahiff plots

9

Partitioning

● The solution most sites have gone for is dynamic
partitioning their clusters and limiting the number of
draining cores at the time.

● FZK have batch system native solution
● Nikhef and RAL creatively (adding their own scripts).

● Partitioning allow single and multicore to cohexist
without trampling on each other and still allowing fair
shares to work.

● Priorities maybe become secondaries but then so they do
with backfilling

10

In Jeff words

● Separate pool : avoid the ‘ops job’ (or other
higher prio job) takes 1 of my 8 slots and
destroys ‘mc slot’

● Floating pool boundary w/ policies for filling
and draining the tank:
● Avoid too many empty slots during filling
● Avoid empty slots if supply of mc jobs consistently

(10+ minutes) dries up
● Protect against short stops

11

Is it the right way?

● It is a way forward.
● It reduces the Four Apocalypse Horsemen power

● Draining, short jobs, waves and no walltime
● It accomodates both Atlas and CMS models

● without dedicating resources to multicore
● It is native to a number of batch systems

● Maui sites may benefit from Nikhef scripts

12

Still

● Jobs longer than 2h, constant job submission
and an estimate of the walltime should be an
experiment priority because they would reduce
the problem further, resolving also those few
tenths or hundreds constantly draining cpus per
site
● which may look little when talking about 1-2% but

they are still a waste considering shrinking funding
everywhere.

13

Next phase

● The immediate objective is to test both models in a shared
environment.

● Find out if they can work together and how the global
performance depends on the size of the site, the actual mixture of
single core / multicore jobs (or pilots), if the site is dedicated
mainly to HEP or not, the actual batch system capabilities and its
particular tuning, etc.

● CMS is starting to test more widely
● More sites should give a go with the recipes exposed so far

● Should still work on wallclock time
● ATLAS more dynamic queues and getting blah scripts for sites

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

