Intelligent Pixels: The SOIPiX R&D programme and applications

E.Cortina

UCLouvain

July 19, 2014

A B M A B M

3

1. Introduction

- 2. SOI technology
- 3. SOIPIX project
- 4. Applications
- 5. Summary

э

• • = • • = •

1. Introduction

Semiconductor detectors Pixel Detectors

э.

イロン イ理 とくほと くほとう

Semiconductor sensors

The basis of semiconductor detectors is a reverse bias pn-junction

- In the depletion layer
 - No free charge carriers
 - Presence of an electric field
- If radiation pass through
 - e-h pairs generation in the depletion layer
 - Drift of charge carriers \rightarrow signal induction

$$W\simeq \sqrt{rac{2arepsilon V}{qN}}$$
 $W\uparrow~ ext{if:}~V\uparrow N\downarrow~ ext{HR wafers}$

Semiconductor structures

Semiconductors can be manufactured in various configurations:

- Pads
- micro-strips detectors
 - single sided
 - double sided
- Pixel detectors
 - Hybrid detectors
 - Monolithic pixel (MAPS)
 - Charge Coupling Devices (CCD)
- Silicon Drift Chambers

3 > < 3 >

Pixel Detectors

- Target applications:
 - Particle Physics
 - Astroparticle
 - Astronomy and Astrophysics
 - X-ray, γ-ray imaging: medical, research, industry
 - Medical imaging
 - High Speed imaging
 - **۱**...
- Pixel detectors used in demanding high energy physics applications such as at the Large Hadron Collider, ILC, B-factories.
- Innermost part of a detector is often the tracker
 - Resolution in space and/or time
 - Material budget
 - Radiation hardness

A B F A B F

Pixel Detectors

• Spatial resolution to distinguish vertex and secondary decays

- Time resolution to cope with high rates
- Low material budget to reduce scattering
- Radiation hardness as detectors are close to the interaction point.
- Typical sizes: $20\mu m \times 20\mu m$
 - $\blacktriangleright~2~\text{cm}~x~2~\text{cm}$ sensor $\rightarrow~10^6$ readout channels
 - Power consumption per pixel should be low

Hybrid Detectors

- Current state of the art
- Sensor and readout electronics fabricated on separate wafers of different resistivities
- Connected together by bump bonding technique:

- "Complicated" procedure
- Costly in time and money
- Limits material budget
- Alignment and bump ball limits pixel size

Monolithic Detectors

- Sensor and readout electronics developed in same silicon wafer
- Potentially overcome hybrid detector limitations and costs
- Research is ongoing on monolithic silicon detectors:
 - MIMOSA, CMOS sensors
 - DEPFET, Depleted Field Effect Transistor
 - CCDs (buried channels)
 - HVCMOS
- SOIPIX: Silicon-on-Insulator(SOI) technology

2. SOI technology

Description SOI Detector SOI feautures

æ

イロト イヨト イヨト イヨト

Silicon-on-Insulator Wafer

- Top active layer: a few tens of nm
- Buried oxide layer (BOX): a few hundreds of nm
- Handle wafer: a few hundreds of μm
 - High resistivity required for sensor development

• • = • • = •

Silicon-on-Insulator Technology

- First field effect transistor patent in 1928 was for a device similar to current SOI but no evidence this device ever worked
- Specialized use for military and space applications due to radiation tolerance
- Mass production began in 1998 with IBM's PowerPC
- SIMOX and wafer bonding such as Smart Cut processes to create wafers
- Wafer bonding of interest for detector development since active layer and hand wafer can be different substrates

SOI vs bulk Technology

- SOI technology provides improved parasitic performance over traditional bulk technology
- Insulation from substrate removes parasitic structures
- In SOI each device is completely isolated by oxide

3

PD-SOI vs FD-SOI

Small Junction Capacitance **Bulk**

- Junction Capacitance in FD-SOI is $\sim \frac{1}{10}$ of bulk technology
- Gate capacitance is 30-40% lower
- higher speeds

Low power consumption

Gate voltage is not wasted to deplete the bulk.

• Lower Threshold is possible without increasing Leakage Current.

Infieri-2014

Radiation Tolerance

SOI is immune to Single Event Effect:

but not necessary strong to total ionization dose due to the thick BOX layer

- 4 同 6 4 日 6 4 日 6

TID Damage Compensation

- V_{th} can be changed polarising back plane
- Leak current and V_{th} resumes to nearly original value by biasing back side

Standard SOI wafer Only transistors on Top layer No implants in Bottom layer

Operation at Cryogenic Temperature

Infieri-2014

SOIPIX

SOI Monolithic Detector

- Use SOI wafer to develop monolithic detector
 - Top active layer holds readout electronics
 - Bottom handle wafer (HR) contains sensor
 - Middle silicon oxide layer insulates the electronics from the sensor
- Depletion voltage applied to the sensor in handle wafer

SOI features

- No mechanical bonding.
 - Semiconductor process only: high reliability, low cost are expected.
 - Less material that reduces multiple scattering
 - No bump pads and smaller pixel sizes possible
- Fully depleted thick sensing region with low sense node capacitance \rightarrow large conversion gain and low noise operation are possible
- Full CMOS circuitry can be implemented on each pixel
- SEE cross section are very small. Latch-up mechanism, which destroys conventional bulk CMOS LSI, is absent.
- Can be operated in wide temperature (1K-570K) range,
- Based on Industry Standard Technology.
- Emerging 3D integration techniques are a natural extension of the technology.

通 ト イヨ ト イヨト

3. SOIPIX project

SOIPIX collaboration SOIPIX technology SOI Issues Buried p-Well Double SOI Nested Well 3D Integration

э

SOIPIX collaboration

 R&D collaboration aiming to study the feasibility of using SOI technology as a radiation detector

http://rd.kek.jp/project/soi/

- Close collaboration with Lapis Semiconductor Co (former OKI Semiconductor Co)
 - Industrial partnership essential to develop new techniques
 - Privileged relation with KEK
 - > At the origin of most of the technological advancements in this project
- Lapis 0.2µm FD-SOI

通 ト イヨ ト イヨト

SOIPIX - MPW

Size and Technology matters

WINFAB (2 μ m) 1 metal layer + 1 poly LAPIS $(0.2\mu m)$ 5 metal layers + 1 poly

SOIPIX technology

SOIPIX - Mask

- Mask size: 24.6mm x 30.8mm
- Smallest chip area: 2.9mm x 2.9mm
- I/O structures available

Lapis $0.2\mu m$ FD-SOI Pixel Process

Process	0.2 μ m low-leakeage FD SOI CMOS		
	1 Poly, 5 Metal layers		
	MIM Capacitor (1.5 fF/ μ m ²), DMOS		
	Core (I/O) Voltage = 1.8 V (3.3 V)		
SOI wafer	Diameter: 200 mm; 720 μ m thick		
	Top Si: Cz ${\sim}18~\Omega$ -cm, p-type, ${\sim}40$ nm thick		
	Buried Oxide: 200 nm thick		
	Handle wafer: Cz(n) \sim 700 Ω -cm		
	FZ(n)~7kΩ-cm		
	$FZ(p){\sim}25\mathrm{k}\Omega ext{-cm}$		
Backside	Thinned to 100-500 μ m		
	mechanical grinding, chemical etching		
	Back side implant, laser annealing and Al plating (200 nm)		
Transistors	Normal and low threshold transistors for both core and IO		
	Three structures: body floating, source-tie and body-tie		

SOI process: Top Si

3

イロン イヨン イヨン イヨン

SOI process: Bottom Si

- Implants (PS,NS) high density layer (Open Top Si and BOX)
- Buried wells (BPW, BP2, BP3, BNW) low density buried layer
- For p-type substrate, dopants are changed to create reverse polarity by using the same mask layers.
- Doping density and depth can be changed on request

Normal Process for n- substrate

Reverse Process for p- substrate

くほと くほと くほと

э

Issues in SOI pixel

Sensors and electronics are located very close.

	e •	•	<u></u>	2.4	
In	tier	-	21		- 21
			-		

• • = • • = •

Backgate effect

Since sensor and transistors are located very close (\sim 200 ns), transistors become ON when high voltage is applied to the sensor

• Solution:

Shield the electric field of the transistor from the sensor voltage

- Three shielding structures proposed so far:
 - Buried p-Well (BPW)

< 回 > < 三 > < 三 >

- Double SOI (SOI2)
- Nested Wells

Buried p-Well (BPW)

- Suppress the Back Gate Effect
- Shrink pixel size without loosing sensitive area
- Increase break down voltage with low dose region
- Less electric field in the BOX which improve radiation hardness - ∢ 🗇 እ

BPW: Back gate effect

34

BPW: radiation hardness

Irradiation with 60 MeV protons

э

BPW: radiation hardness

Irradiation with ⁶⁰Co

э

BPW: radiation hardness

Comparison 60 MeV protons and ⁶⁰Co

э

BPW summary

- BPW protects for backgate effect
- BPW does not protect for hole trap in BOX
- No possibility to compensate the generated electric field

< 3 > < 3 >

Double SOI

- Shield transistors from bottom electric field
- Compensate electric field generated by the trapped hole in the BOX.
- Reduce crosstalk between sensors and circuits.

Double SOI Process

SOI2 - SEM

Resistivity of the middle Si is $\sim 10 \ \Omega$ -cm with CoSi₂: $\sim 170 \ k\Omega/\Box$ w/o CoSi₂: $\sim 1 \ M\Omega/\Box$

3

イロト 不得 トイヨト イヨト

SOI2 - SEM

æ

SOI2: Back Gate Effect

Back-Gate Effect is fully suppressed with the middle Si layer at fixed voltage

b) Middle-Si = GND

(日) (周) (三) (三)

э

V_{th} control with middle Si layer

NMOS

Core Normal-Vt L / W = 0.2 / 5.0 um Vd=0.1V Vback: floating

Threshold voltage of a transistor is controlled with the bias voltage of the Middle-Si layer.

This indicate effects of the trapped charge in the BOX can be compensated with the bias voltage.

< 3 > < 3 >

Double SOI

Gamma-ray Irradiation Test

- By setting $V_{SOI2} \sim$ -5V, Id-Vg curve returned nearly to pre-irradiation value.
- V_{SOI2} to be applied depends on dose received

SOI2: Summary

Effect of middle Si layer on Charge Collection

- SOI2 protects against backgate effect
- To compensate trapped hole effect → negative SOI2 voltage is necessary.
- To push electrical flux lines to sense node → positive SOI2 voltage is necessary.
- It is better to use p-type substrate instead of n-type

Nested Well Structure

- Signal is collected with the deep buried p-well
- Back gate and cross-talk are shielded with the buried n-well

Infieri-2014

3D integration

- 3D vertical Integration technique is expected to play an important role in future high performance pixel detector
- SOIPIX can be naturally extended with 3D technology
- First test with 3D test chips done . (μ -bump technology \sim 5 um pitch)

4. Applications SEABAS INTPIX X-ray detectors Vertex Detectors On-going projects

æ

SEABAS Readout board

SEABAS = SOI EvAluation BoArd with Sitcp

- 2 FPGAS: control SOI chips
 - data transfert through Ethernet
- Daughter board to host SOIPIX chip
- 70 frame/sec with INTPIX4 (425k pixels)

- 4 3 6 4 3 6

Integration type Pixel Detector

- Main SOI detector development so far
- Basic circuit (source follower)

- CDS circuitry on pixel or in column circuitry
- Typical pixel size $12\mu m \times 12\mu m$

INTPIX

INTPIX detectors

	DIPIX1/2	FPIX1	INTPIX4	INTPIX5/6
Pixel Size [um]	14 × 14	8 × 8	17×17	12 x 12
Chip Size [mm]	5 × 5	6 × 6	10.2×15.4	12.2 × 18.4
CDS	Pixel	-	Pixel	Column
Store Switch	yes	-	Yes	Yes
Gain	Fix	Fix	Fix	2 gain
	9.3 uV/e	28 uV/e	12.6 uV/e	16/2.5 uV/e
Max. Charge	110 ke-	40 ke-	80 ke-	70/460 ke-
No. of Pixels	256 x 128 x 2	512 × 512	512 × 832	896 × 1408
	\sim 65 kpix	${\sim}260~{ m kpix}$	\sim 430 kpix	${\sim}1260$ kpix
No. of Output	1	1 or 9	1 or 13	1 or 11
Rolling Shutter	-	yes	_	yes

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

X-ray Image of a small dried sardine taken by a INTPIX4 sensor (3 images are combined).

Infieri-2014

54

イロト イポト イヨト イヨト

Spatial Resolution: Contrast Transfer Function

Comparison of contrasts with commercial X-ray devices: INTPIX4, Flat Panel Sensor (FPS), CCD, Imaging Plate (IP)

INTPIX

High-energy particle test beam

- CERN SPS
- 120 GeV
- π⁺ 55%, p 39%, K⁺ 5%
- 4 layers of INTPIX ($16 \times 16 \mu m$)

Infieri-2014

Optical chopper movie

2-4Hz Optical chopper -

- 4 週 ト - 4 三 ト - 4 三 ト

XRPIX

- XRPIX: developed for a X-ray astronomical satellite
- Basic structure
 - Source follower or CSA, both with on-pixel CDS
 - Trigger generator
- Trigger + active shield pixel \rightarrow charged particle bkg removed

XRPIX: CSA vs source follower

• Better performances with CSA

	Normal	CSA
Gain	$5.2 \ \mu V/e^-$	$17.9~\mu\mathrm{V/e^-}$
Noise	76 e ⁻	33 e ⁻
FWHM	650 e ⁻ @ 5.9 keV	650 e ⁻ @ 5.9 keV

SOPHIAS

- Silicon-On-Insulator Photon Imaging Array Sensor
- Developed for X-ray Free Electron laser Facility SACLA
- 1.9 Mpixel (30 μ m)
- 40% quantum efficiency at 20 keV X-ray with 500 $\mu \rm m$ thick handle wafer
- Two gains to reach large dynamic range

SOPHIAS: Stitching

- Mask limited to 24.6mm x 30.8mm
- Stitching technique to build large formats with one mask
- 10 μ m buffer region and only minimum number of layers connected (PS,NS,metal1)

SOPHIAS: Stitching

SOPHIAS

- Cu target
- X-ray source size :~3 um
- Exposure time :10 msec
- Temperature : room temperature

Infieri-2014

24/24

50

PIXOR

- R&D for a future vertex detector at Belle II
- PIXOR = PIXel OR
 - Define NxN matrix (superpixel)
 - Columns and Rows ORed separetely

PIXOR pitch	25um x 40mm	
sampling rate	42.33MHz	
Pixel OR	16	
thickness	100um	
trigger latency	5us	
occupancy(L3)	0.0165	

• • = • • = •

PIXOR

- Reduce $N^2 \rightarrow 2N$ readout channels
 - Keeping resolution as same as pixel.
 - Earn the circuit area/pixel \rightarrow complex circuitry
 - Ghost can be suppressed with proper #OR

ON-going projects

- INTPIX : General Purpose Integration Type (KEK)
- SOPHIAS : Large Dynamic Range for XFEL (Riken)
- PIXOR : Belle II Vertex Detector (Tohoku U.)
- XRPIX : X-ray Astronomy in Satellite (Kyoto U.)
- STJPIX : Superconducting Tunnel Junction on SOI (Tsukuba U.)
- CNTPIX : General Purpose Counting Type (KEK)
- LHDPIX : Nuclear Fusion Plasma X-ray (KEK, NIFS)
- MALPIX : TOF Imaging Mass Spectrometer (KEK, Osaka U.)
- TDIPIX : Time Delaying Integration for X-ray Inspection (KEK)
- MAMBO : General Purpose Counting. Nested well (Fermilab)
- TRAPPISTe: General Purpose Tracking Detector (UCLouvain)
- — : General Purpose Integration type (AGH-Krakow)

O

5. Summary

æ

イロン イ団と イヨン イヨン

Summary

- SOIPIX collaboration have developed SOI Pixel process and fabricated many kinds of monolithic pixel detectors
- SOIPIX have twice/year regular MPW runs with increasing number of users.
- Many new process technologies have been developed to overcome SOI problems;
 - Buried P-well, Double SOI, Nested well structure
 - High resistive SOI wafer
 - Stitching
 - Vertical integration
- Double SOI of p-type substrate looks promising for rad-hard counting-type pixel detector.

くほと くほと くほと