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About a few Challenges for 
Signal Processing in emission 
and transmission tomography 

Pr Christian MOREL 
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Tomography 

From Greek tomê (slice)  
+ 

graphô (write) 
= 

Representation into slices 
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Positron Emission Tomography (PET) 

Wrenn et al. The use of positron 
emitting radioisotopes for the 
localization of brain tumours 
Science 113 (1951) 525 
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Two dimensional image reconstruction 

1963: Alan McLeod Cormack 

Rediscovery of an analytical 
inversion already published by 
Radon en 1917 to reconstruct an 
object in two dimensions (2D) 
from its line integrals 
(projections) 
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1972: Godfrey N Hounsfiled 

Development at EMI of X-ray computerized 
assisted tomography (CAT or CT scan) 

Computerized Assisted Tomography 
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X-ray CAT or CT 

1979: Hounsfield and 
Cormack received the Nobel 
Price in medicine for the 
development of 
computerized assisted 
tomography 
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Transmission tomography 
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Positron Emission Tomography (PET) 

150 (2 min)  511 keV 
13N (10 min)  511 keV 
11C (20 min)  511 keV 
18F (110 min)  511 keV 

Absolute sensitivity ~ 10–2 
Spatial resolution 3-5 mm 
Absorbed dose  5-10 mSv 
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PET III 1975 

ECAT II 1977 

NeuroECAT 1978 

ECAT 931 1985 

ECAT EXACT HR+ 1995 

Constant progress in instrumentation 
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 BGO  LSO   GSO 
Dens. [g/cm3]  7.13   7.4  6.7 
Z effectif  74   66   61 
Decay [ns]  300   35-45   30-60 
ph/MeV  8200   28000  10000 
% NaI(Tl)  15  75   25 

Technical progress in PET 

• Data correction 

• Detectors 

BGO 
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NaI(Tl) 

Li
g
h
t 

o
u
tp

u
t 

Time (ns) after interaction [ns] 

LSO:  69% 
NaI:  35% 
GSO:  20% 
BGO:  4.3% 

Fraction of light 
emitted during 
the first 100 ns 

relative to 
100% NaI 

• image reconstruction FORE+AWOSEM FORE+OSEM 3DRP 
courtesy: DW Townsend, UPMC 
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Societal application of nuclear physics 
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• LSO/GSO phoswich 
• 153600 crystals 
• 1120 PMTs 

High Resolution Research Tomograph (HRRT) 

40 min FDG fused with MRI-T1 
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Time-of-Flight PET (TOF-PET) 

18F 
11C 
13N 
15O 

64Cu 
68Ga 
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2D PET TEP 3D 

Septa 
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 2D … and 3D PET 

2D 

3D 
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 … and 3D PET 

Direct LORs Oblique LORs 

n direct sinograms 

n rings 

n2 sinograms 

n(n–1) oblique sinograms 
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 … and 3D PET 

Direct sinogram 

Oblique sinogram 
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Multi-ring PET scanner with 
septa 

BGO  
detector 
blocks 

Septa 

PMTs 

Block detectors 

courtesy: D. Townsend, UPMC 
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Block detector: spatial localization 

(D + B) - (C + A) 
X =  

S 
(A + B) - (C + D) 

Y =  
S 

S =  A + B + C + D 
where   LLD < S < ULD 

A B 

C D 

X 

Y
 

courtesy: D. Townsend, UPMC 
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Quadrant sharing panels 

Scintillator Light guide 

PMTs 

courtesy: D. Townsend, UPMC 

PMTs 
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courtesy: J. Karp, U Penn 

* 

50-mm 
PMTs 

Continuous  
NaI(Tl) 

light guide 

 Pixelated-continuous detector 

This design ensures 
a homogeneous 
response and light 
collection, which best 
preserves system 
energy resolution 

• individual scintillating crystals 
• optically continuous lightguide 
• closely packed PMTs  

* 

Discrete (pixelated), 
optically isolated, 

GSO crystals 

39-mm 
PMTs 

light guide 
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 Pixelated-continuous detector 

courtesy: J. Karp, U Penn 
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Response of a rotating pair of detectors 

Detectors 

n2 sinograms 

φ	


s 
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n2 sinograms 

φ	
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6 angular positions 

n2 sinograms 

φ	


s 

12 angular positions 

Transverse FOV 

Response of a rotating pair of detectors 
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Response from a ring of bloc detectors 
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Direct sinogram Reconstructed transverse slice 

Diamonds 

Response from a ring of bloc detectors 



19	


Signal Processing in Tomography – INFIERI – Paris – July 15 2014 

Direct sinogram Reconstructed transverse slice 

Response from a rotating ring of bloc detectors 
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Not normalised Normalised 

Static detectors 
Rotating detectors 

Simulation of a uniform phantom 
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 Count rate curves in 2D and 3D PET 
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Detection of random coincidences 

N1 = A ε Ω  

N2 = A ε Ω  

(N2w)  

When N1 gets ahead N2  

 x N1 = NR  

(N1w)  

When N2 gets ahead N1  

 x N2 = NR  



21	


Signal Processing in Tomography – INFIERI – Paris – July 15 2014 

NTrues = A ε2 Ω 

NR =(2 w) A2 ε2 Ω2 

NPrompts = NTrues + NR 

NEC = NTrues
2/(NTrues + 2 NR) 

Detection of random coincidences 
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Detection of scattered coincidences 
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Simulation 
without scatter 

Simulation 
with scatter 

Detection of scattered coincidences 
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1D parallel projection 

2D Filtered Back-Projection (2D FBP) 
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2D reconstruction 

3D reconstruction 
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Direct space 

Projection space Frequency space 

Fourier Transform
 

Image reconstruction 
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Inversion of the 3D Radon Transform 
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Modulation Transfer Function  of a 2D Filter 
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2D Colsher Filter (1980)  
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δ = 0, projections directes

δ = 3, projections obliques

δ = 6, projections obliques

3D Re-Projection algorithm (3DRP) 

Signal Processing in Tomography – INFIERI – Paris – July 15 2014 

3D Re-Projection algorithm (3DRP) 
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Image reconstruction and statistics 

courtesy: C. Comtat, CEA-SHFJ 
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Improving spatial resolution by a factor 2 involves to 
increase statistics by a factor 16  

to getting the same signal-to-noise ratio  
in the reconstructed image 

L	
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Signal-to-noise ratio and counting statistics 
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TOF-PET and improvement of SNR 
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Brain imaging L = 20 cm⇒ f >1 if Δt <1,3 ns
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Support of the Fourier Transform  
of the X-ray Transform 
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G(νs,κφ ) = TF2D[g(s,φ)]

Support of the Fourier Transform  
of the X-ray Transform 
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Orthogonal sampling of the 2D X-ray Transform 
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Interleaved sampling of the 2D X-ray Transform 
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G(νs,κφ ,τ z ) = TF3D[g(s,φ,z)]

Support of the Fourier 
Transform of the 3D 

transverse  
X-ray Transform 
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Hexagonal interleaved sampling 
of the 3D transverse X-ray Transform 


