About a few Challenges for Signal Processing in emission and transmission tomography

Pr Christian MOREL Centre de Physique des Particules de Marseille

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Positron Emission Tomography (PET)

Wrenn et al. The use of positron emitting radioisotopes for the localization of brain tumours *Science* **113** (1951) 525

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Two dimensional image reconstruction

1963: Alan McLeod Cormack

Rediscovery of an analytical inversion already published by Radon en 1917 to reconstruct an object in two dimensions (2D) from its line integrals (projections)

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Computerized Assisted Tomography

1972: Godfrey N Hounsfiled

30 detectors Scan time 18 seconds

700 stationary detectors Scan time 2 - 4 seconds

Development at EMI of X-ray computerized assisted tomography (CAT or CT scan)

X-ray CAT or CT

1979: Hounsfield and Cormack received the Nobel Price in medicine for the development of computerized assisted tomography

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Transmission tomography

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Emission tomography

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Emission tomography

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Emission tomography

Emission tomography

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Constant progress in instrumentation

PET III 1975
ECAT II 1977
NeuroECAT 1978
ECAT 931 1985
ECAT EXACT HR+ 1995

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Societal application of nuclear physics

High Resolution Research Tomograph (HRRT)

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

12

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

... and 3D PET

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Response of a rotating pair of detectors

n² sinograms

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Response of a rotating pair of detectors

Response from a ring of bloc detectors

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Response from a ring of bloc detectors

Direct sinogram

Reconstructed transverse slice

Response from a rotating ring of bloc detectors

Direct sinogram

Reconstructed transverse slice

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Simulation of a uniform phantom

Count rate curves in 2D and 3D PET

Detection of random coincidences

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Detection of random coincidences

Detection of scattered coincidences

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Detection of scattered coincidences

Simulation without scatter

Simulation with scatter

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Central Slice Theorem

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

2D Filtered Back-Projection (2D FBP)

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Image reconstruction

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Inversion of the 3D Radon Transform

Modulation Transfer Function of a 2D Filter

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

2D Colsher Filter (1980)

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

3D Re-Projection algorithm (3DRP)

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

3D Re-Projection algorithm (3DRP)

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Image reconstruction and statistics

courtesy: C. Comtat, CEA-SHFJ

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal-to-noise ratio and counting statistics

Improving spatial resolution by a factor 2 involves to increase statistics by a factor 16 to getting the same signal-to-noise ratio in the reconstructed image

Signal-to-noise ratio and counting statistics

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

TOF-PET and improvement of SNR

$$N_{Tot} = \left(\frac{L}{d}\right)^{3} \times \left(\frac{A}{\Delta A}\right)^{2} \times \left(\frac{L}{d}\right)$$

$$N_{ToF} = \left(\frac{L}{d}\right)^{3} \times \left(\frac{A}{\Delta A}\right)^{2} \times \left(\frac{\Delta L}{d}\right)$$
Variance reduction factor $f = \frac{L}{\Delta L} = \frac{2L}{c\Delta t}$

$$\Delta L = \frac{1}{2}c\Delta t$$

Whole - body imaging L = 35 cm \Rightarrow f > 1 if Δt < 2,3 ns

Brain imaging L = 20 cm \Rightarrow f > 1 if Δt < 1,3 ns

Support of the Fourier Transform of the X-ray Transform

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Support of the Fourier Transform of the X-ray Transform

Orthogonal sampling of the 2D X-ray Transform

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Interleaved sampling of the 2D X-ray Transform

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Support of the Fourier Transform of the 3D transverse X-ray Transform

$$G(v_s, \kappa_{\phi}, \tau_z) = \mathrm{TF}_{\mathrm{3D}}[g(s, \phi, z)]$$

Signal Processing in Tomography – INFIERI – Paris – July 15 2014

Signal Processing in Tomography – INFIERI – Paris – July 15 2014