Introduction to GPU computing with CUDA Computing lab 1 - presentation

Pierre Kestener

CEA-Saclay, DSM, France Maison de la Simulation

INFIERI, July 15th, 2014

HPC @ Maison de la Simulation

- Maison de la Simulation is a joint laboratory CEA-CNRS-Inria-UPS-UVSQ
- Research and Service Unit, CNRS USR 3441, High-Performance Computing
 - HPC oriented multi-disciplinary research lab (e.g. large scale parallel linear algebra algorithms, ...)
 - Service unit offering expertise and support to the HPC users community, especially for high-end software development.
 - Center for education, training and scientific animation around HPC

What is the GPU Programming lecture about?

- GPU: Graphics processing units
- CUDA architecture in 2007: starting point of General-Purpose computing on GPU
- A short historical overview of GPU: from highly specific to general purpose processors
- Today's GPU hardware architecture: how different is a GPU from a CPU: the hardware point of view
 - CPU are latency-oriented architectures (large memory cache, complex control logic, ...)
 - GPU are throughput-oriented architeures (massive data parallelism to hide memory latencies, ...)

What is the GPU Programming lecture about?

• What is CUDA?

- a hardware architecture (an execution model, memory hierarchy)
- a programming model with a C-based programming language with extension specific to massive data parallelism
- Use a simple example to perform CUDA code walk-through
- Understand what type of algorithms will better benefit from a GPU implementation
- Give a short list of additionnal material for advanced knowledge of GPU

What is the GPU Programming lecture about?

- Illustrate GPU computing in astrophysics context for HPC applications: characterizing turbulence in the interstellar medium
 - code RamsesGPU: perform very high resolution compressible MHD simulation on a cluster of GPU (PRACE/CURIE, OLCF/TITAN)
 - Large scale simulation issues: efficient use of GPU, performing parallel I/O with large files, in-situ visualization ...
 - High performance, which metric? FLOPS/s, GBytes/s, parallel filesystem, ...
 - performing high Mach MHD simulations 2016³ using 486 GPUs
 - Scaling RamsesGPU performance on OLCF/TITAN: up to 4096 GPUs

GPU Programming Computing Lab

- Date: July 24th
- Provide access to a remote compute workstation equipped with a high-end NVIDIA K20 GPU.
- Give some basic exercises/tutorial to get familiar with the development tools:
 - · use of the nvcc compiler
 - · know your GPU hardware
 - Basics of the programming model: threadIdx, blockIdx, ...
 - Understanding memory-bound / compute-bound algorithm implementation in GPU context

GPU Programming Computing Lab

 Illustrate one parallel patterns implementation on GPU: the stencil pattern using a heat equation solver algorithm.

