Massively Parallel Computing at
the Large Hadron Collider up to
the HL-LHC

Paul Lujan
(on behalf of Valerie Halyo)

Princeton University

The Large Hadron Collider

o 27 km circumference ring on France/
Switzerland border

» Design center-of-mass energy of 14 TeV

* Four major experiments: ATLAS & CMS (general
purpose), LHCb (b physics), ALICE (heavy ion)

The LHC Detectors

» Generally similar layout (except for LHCb)

Inner tracker

Outer tracker

Magnet

EM calorimeter

Hadronic
calorimeter

Muons

Si pixels & strips

Straw tracker

2T solenoid
outside tracker

LAr in lead/steel

Scintillators in
steel

DT/CSCs and
RPCs in toroids

Si pixels

Si strips

3.8T solenoid
outside
calorimeter

Lead tungstate
crystals

Scintillators in
brass/steel

DT/CSCs and
RPCs in solenoid
return yoke

Si pixels & strips

Time projection
chamber

0.5T solenoid

PbWO, (y) +
Pb/scintillator

n/a

CSCs and RPCs
in dipole
magnet

Si pixels (VELO)

Si strips, straws,
Cherenkov

Dipole, avg. field
= 0.5T

Scintillators in
lead

Scintillators in
iron

Multiwire
proportional
chambers + GEM

CMS Slice

o Example particle signatures in CMS

EIl 1 I |
m m Im
Key:

Muon

Electron

Charged Hadron (e.g. Pion)

— — = - Neutral Hadron (e.g. Meutron)
'''' Photon

&
Electrom B netic

|1Il Calorimeter
Hadron

Calorimeter

Iran raturn yoke interspersed
with Muon chambers

Transverse slice
through CMS

D Barmay, CEHM, Faban FlL

Increasing Luminosity at the LHC

* Increased luminosity means increased pileup
(number of interactions per bunch crossing)

» Events become more challenging to reconstruct
as pileup increases

High pileup run:

/8 reconstructed vertices

Image editing:A. Rao

Run | (through 2012)

o Center-of-mass energy: 7-8 TeV

 Typical luminosity: 5 x 1033 cm™ s1, up to peak
of approx. 7 x 1033

* Bunch spacing: 50 ns (20 MHz collision rate)
o Typical pileup: ~25, up to peak of ~40
» Total delivered luminosity: ~30 fb

Run 11 (2015-2018)

* Center-of-mass energy: 13-14 TeV

o Typical luminosity: 1.5 x 103* cm= s

* Bunch spacing: 25 ns (40 MHz collision rate)

* Expected pileup: average of ~40

» Total expected delivered luminosity: ~100 fb!

Run 11 (2020-2022)

e Center-of-mass energy: 14 TeV

e Typical luminosity: 2 x 103* cm™2 st

* Bunch spacing: 25 ns (40 MHz collision rate)

* Expected pileup: average of ~60

» Total expected delivered luminosity: ~300 fb!

HL-LHC (2025-)

e Center-of-mass energy: 14 TeV

e Typical luminosity: 5 x 103* cm™2 st

* Bunch spacing: 25 ns (40 MHz collision rate)

» Expected pileup: average of ~130

» Total expected delivered luminosity: ~3000 fb-!

* Major upgrades to all detectors to increase
physics capabilities, replace radiation-damaged
parts, handle increased luminosity, etc.

o Will require large computing efforts to handle
the volume of data, both online and offline

The Need for Parallel Computing

* Increase in clock speed,

MIPS!ICPU clock speed

) which was fairly
R constant, stalled out
around year 2000

* Need other ways to
obtain increased
performance

* Parallel computing:
8 B L A T S multi-core, GPU

courtesy r-bloggers.com Computing, many
integrated core (MIC)

Massively Parallel Computing

In contrast to multi-core computing, massively
parallel systems can feature 1000s of cores

° |Individual cores are not as powerful, but the parallelism
gives an advantage

GPU computing (e.g. Nvidia Tesla): use the stream
processors in a graphics processing unit (GPU) for
general-purpose computation

MIC computing (e.g. Intel Xeon Phi): large number
of x86-based processor units in a single chip

Require different approaches than regular CPU
programming

> |ssues such as memory access become very important

GPU Computing: A Brief History

» 2001: first programs using GPU for general
purpose computing

> Required translating the problem into a graphics
problem using DirectX/OpenGL

e 2007: release of Nvidia CUDA

> Allowed GPU programming with nearly-standard C++
code

» 2009-present: development of various
standards to simplify GPU programming
> OpenMP, OpenACC, OpenCL, etc...

Nvidia Tesla

» Tesla K40: Kepler architecture,
2880 thread processors @
745 MHz, 12 GB GDDR5
RAM @ 288 GB/s

Intel Xeon Phi

o Xeon Phi 7120P: Knights Corner architecture, 61
cores @ 1.24 GHz (up to 1.33 GHz), 16 GB DDR5
RAM @ 352 GB/s

* 4-way hyperthreading
e 512-bit AVX2 vector extensions

July 24,2014 P. Lujan (for V. Halyo), INFIERI 2014 14

Using parallel computing: libraries

e Libraries built to take advantage of accelerators
already exist for many common packages
o e.g. for CUDA: libfftw = cuFFT, libblas = cuBLAS, NPP

(Nvidia Performance Primitives), etc.

* Very easy to implement: just drop into an
existing project

» Often can provide considerable speedup —
sometimes beneficial to use even if not so that
a computation can be done entirely on the GPU

Using parallel computing: directives

e Standards such as OpenMP or OpenACC can
provide simple but more customizable
acceleration.

* |t can be as easy as (example in OpenACC):

#pragma acc kernels
for (int 1=0; 1i<n; ++1) {

J

o Compiler support still incomplete (e.g.,
OpenACC is not in gcc yet), but making rapid
progress

Using parallel computing: CUDA

o Define kernels that run on the GPU, copy memory to GPU as necessary,
and call them:

//example code from Nvidia -- developer.nvidia.com
__global
void saxpy(int n, float a, float *x, float *y)
{
int 1 = blockIdx.x*blockDim.x + threadIdx.x;

if (1 < n) yli] = a*x[i] + y[i];

int main (void)
{
int N = 1<<20;
float *x, *y, *d x, *d y;

// put data into x[] and y[]
cudaMalloc (&d _x, N*sizeof (float));

cudaMalloc (&d_y, N*sizeof (float));

cudaMemcpy (d_x, x, N*sizeof (float), cudaMemcpyHostToDevice);

cudaMemcpy (d_y, y, N*sizeof (float), cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements
saxpy<<< (N+255) /256, 256>>>(N, 2.0, d x, d_y);

cudaMemcpy (y, d_y, N*sizeof (float), cudaMemcpyDeviceToHost);

Optimizing parallel code

* Not an easy task!
e For instance,

saxpy<<< (N+255) /256, 256>>>(N, 2.0, d x, d y);

* These two arguments are the number of blocks and
the threads per block.

* How to choose optimal number of threads per
block?

° The answer depends on the details of the hardware and
the problem

o Often trial and error is the only way

o Work on automating this optimization is in progress, but
still a long way away

Complications with directives

e Naive use of directives like #fpragma acc kernels
can often result in slower code than the non-
parallelized version!
> For example, the compiler doesn’t necessarily know
when it needs to copy the data between the host and
the device, so it will be conservative.

> This can result in a lot of additional unnecessary
copying.

> You’ll need additional pragmas like #pragma acc

data to instruct the compiler when it needs to copy
data and when it can keep the data on the device.

Parallel computing: summary

* Writing massively parallel programs has never
been easier.

» Libraries and directives make it very easy to get
started.

*» However, you still need a good understanding of
the problem and the computational issues to
get best performance.

» Profiling tools to find which steps are slowest
are critical.

Advantages of Accelerators at LHC

» Easy to integrate hardware into existing
computing farms

» Relatively low cost

o Can be gradually integrated as resources are
available

o Can write software compatible with variety of
hardware setups

e Integrating these capabilities into the current
software is not always easy!

Parallel Computing at the LHC

* Examples of current projects
e Future plans

» A case study: tracking & triggering of displaced
tracks at CMS

23

D. Rohr, CHEP12

July 24,2014 P. Lujan (for V. Halyo), INFIERI 2014

multiplicity

GPU Acceleration of Tracking at ALICE
* Heavy ion collisions have a very large track

v
| |

N A

GPU Tracking at ALICE

e CPU does pre- and post-processing of the tracks

o Actual track finding and fitting is offloaded to
the GPU

* Multiple CPU cores used to ensure GPU always
remains busy

* Run on relatively simple GPU hardware
(originally Nvidia GTX 295, later GTX 480)

* Overall increase of 3x speed

GPU Tracking: additional advantages

e Normally tracking in the TPC is local: the
chamber is divided into slices

 If only a small part of a track is in a given slice,
the track will not be reconstructed

Segment used as seed[x
for Global Tracking —

Segment with less than
30 Clusters, found only
with Global Tracking ™%

Slice n+2

/>Eice n+3

* Global tracking allows the track to be
propagated between sectors for more efficient
reconstruction

Segment with at least "
30 Clusters; Global — I
Tracking not necessary X .'_::._f,d.

GooFit: RooFit with GPUs

* RooFit — a standard ROOT-based framework for
performing a wide variety of fits

* Maximume-likelihood fits can become very
lengthy

* GooFit exports this calculation onto GPUs,
which can result in large speedups
> Two backends: CUDA and OpenMP

» Very similar to current RooFit interface

GooFit Example

e Time-dependent amplitude analysis of D, &
reremY
> Unbinned 4-D fit with about 40 signal parameters

— Less than 0906 pe
T 3 LI | T -_|. T T T T T T . [(LADE - D408} pa
- paaes (0408 - 0L410) pa
& IH 1‘ — (0410 - 0.412) ps
— B SR - (0412 - 0414} ps
w=r2.5 EEmmmem Em
E - | - T — (0414 - DLA16) p
llllll] aEm
BERERE el ietm, —— Greater than 0.416 ps
B S RmEEe S W -
2 S e S solat. -
B SEEmmsEmEEE s e -
EETEEE EEEAEAEEEEEEN _
.....
- L} EEsEn (111] -
| | EEENES 11
- - - (11 - EEaEEeN
H
1.5 4' =fEiii:
R R
. : ITEEEatiiiiiiia
- eSS N
- = EEREEEC G mEs aSEESEEEEEEE
L LR T YT T T T T P] T T] [1 1]
1 [111
“mmn HHH
" o HH
........ A
. s=sEE - . (1] L} —
| - tEEECmmmEE g
0.5 staneeg=®
| | | |

% 11 Iulsl 1 1 1 1 I1 -5 1 1 2 11 | I2-5I 1 3

R. Andreassen, CHEP2013

GooFit Speedup

Original CPU 19489 1.0
Xeon E5520 OpenMP 3056 6.4
1 thread

Xeon E5520 OpenMP 432 45.1
24 threads

above + Nvidia Tesla 64 304.5
C2050

Intel i7-3610QM 2042 9.5
OpenMP 1 thread

Intel i7-3610QM 407 47.9
OpenMP 8 threads

above + Nvidia 212 91.9

GeForce 650M
Nvidia Tesla C2070 54 360.1

Future Tracking Plans

» Lots of research going into improving the
tracking at all LHC experiments

o Algorithms: CTF (Kalman filter), cellular automata,
tracklet, retina, pattern recognition, ...

> Technologies: GPU, MIC, FPGA, ...

* Improving tracking performance will make a L1
track trigger possible

* Will be a long road ahead, however...

Looking for New Physics

» So far, these examples have shown ways to
improve performance of existing algorithms.

» But parallel computing also gives us new
algorithms which we can use to look for entirely
new physics.

* As an example, let’s look at a different kind of
signature.

Displaced Tracks

» Consider particles which have a substantial lifetime,
so they travel a significant distance in the detector.

e Such aneventwould
be a clear and 2N £
unambiguous signal ~
of new physics!

* Decay could be into
leptons, jets, ...

» Possible signatures:
displaced tracks,
kinked/disappearing

tracks, delayed simulation of two long-lived
tracks. etc. neutral particles decaying to
’ muons (left) and electrons (right)

Displaced Tracks: Theory

* A wide variety of theoretical models predict this
kind of signature:
° Hidden valley models

o Weakly R-parity-
violating supersymmetry
(SUSY)

o Split SUSY with long-
lived gluinos

o 7" production and
decay

o “Little Higgs” models

» Even black holes could have such a signature — they
could have a significant lifetime in which they can
travel away from the primary interaction

Displaced Tracks: The Problem

* However, standard tracking algorithms
(especially at the trigger level) are not designed
to reconstruct tracks which are significantly

diSplaCEd like these. o CusPeimnay
» Efficiency falls off e ¥y -
] £ s LR 7 —
rapidly above about L "
06— P _
15 cm and is zero : "
04~ = Simulation]
by 30 Cm. 0_2:_ —+— Data ¢ 7
 Somewhat driven by)

d,| fem]

tracker size, but also
by algorithm limitations.

Data/MC

T & ® o % 9 * 4 » . . + + +]

CMS PAS EXO-12-038

Combinatorial Track Finder

* The standard track finding algorithm at CMS
and ATLAS is the Combinatorial Track Finder
(CTF).

» Well-established, reliable algorithm.

I”

e However, the “combinatorial” in the name

suggests the problem...

CTF: Seeding

* Form seeds by taking all possible pairs, then
looking for a third compatible hit

o If a tripletis found, it is used as the starting
trajectory for track finding

pixel layers

CTF: Finding

» The trajectory is then propagated out through
the layers and compatible hit(s) are attached

one seed may produce
multiple candidate tracks...

others may not be
______ successful

silicon strip layers

CTF: Fitting and Cleaning

* Once all of the hits have been found and
attached to the track, a final Kalman fitter step
is performed to get the best fit of the track
parameters using all of the hit information.

» Tracks which share a large number of hits are
then cleaned by selecting the single best fit
track.

CTF: Iterative Tracking

» The CTF also uses “iterative tracking” to reduce
the number of combinations.

o Early iterations look for the easiest tracks to
reconstruct: high-momentum tracks with seeds in the

pixel layers (better resolution).

> The hits from these tracks are then removed and the
search can proceed to lower-momentum tracks and
tracks with seeds in the outer strip layers (including
potentially displaced tracks).

The CMS Trigger

e The HLT performs a nearly full 40 MHz
reconstruction of the event Collision Rate

and must do so in a very
.. . Level-1
limited time. |
Trigger (L1)
o Uses iterative tracking very J
similar to as previously 100 kHz
. . Post-L1 Rate
described, but only in
regions of interest around High-Level
L1 calorimeter/muon hits. Trigger (HLT)

Y

100 Hz
Final Rate

CTF: Online and Offline

* As a consequence of the limited amount of time
available at the HLT, the online CTF does not

include a step to reconstruct displaced tracks —
it’s too expensive!

100}

5o

%ol Only tracks with a transverse
impact parameter < 0.5 cm

0o (green circle) are reconstructed

-50 0 50 100
x (cm)

We could miss entirely events like these!

Consequences for Displaced Tracks

» Especially for jets (especially for models where
the parent particle has a relatively low mass), it
is difficult to construct an effective trigger
algorithm.

» This problem will only get worse with increased
pileup.
» Potential new physics might be missed!

Hough Transform

* Try a Hough-transform based tracking approach

* Hough transform: describe track in terms of
parameters and define parameter space

/
/
/
s
s
/
/
/
/
/
/
s
/
/
/
/
/
/
/
/
/
/
4

y y

« 2 parameters can define a curved track from origin, or a
displaced straight track

« 3 parameters necessary for a displaced curved track

» 5 parameters (full set of track parameters) for a 3-D track

Hough Transform: cont’d

e Each hit in the original space then becomes a
curve in parameter space — the family of curves
that pass through that hit

x >\//\/

Hough transform: simple example

* Begin with hits from 500 simulated curved
tracks (left).

* Apply the Hough transform to get the
parameter space (right).

100

a/p

50

o
1

y (cm)

o
T T

-50

-100

Hough transform: simple example (2)

* Finding the maxima in the parameter space
reconstructs the original tracks.

* In this example,
efficiency N ;’;';,'f",;f/,,

S
is about 85%. ol SRR
» Highly parallelizable —
the conversion of each

hit into parameter space
can be done separately

78y, ’/,
‘Y
2.

y (cm)

-100

* Inherently accounts for
differing resolution of different hits

Performance Testing

e How can we determine which architecture is
the best?

Implementation of Hough Transform

» CPU version (included for comparison) on Intel
i7 using OpenMP for parallelism

* GPU version implemented with CUDA and
tested on Tesla K20c

e Xeon version tested on dual-socket Intel Xeon
CPU (E5-2697v2) and Xeon Phi coprocessor

> Code written to allow compiler to perform automatic
vectorization

> |n terms of power consumption, the dual-socket Xeon
CPU is roughly equivalent to Xeon Phi

* Size of event is small, so no problems with data
transfer

Results

Time vs. tracks per event

—~ 102 = TeslaK20c GPU
o —
8 L[| & i7-3770CPU
m -
:éé - | o 2xE5-2697v2 CPU .
o o Xeon Phi 7120P s o
= 10= 4 -
- @ -
L Q @ - °
— [| [
- . .
— t y + * o o ¥
o o o] o - ° f
|
1=
— N
| []
_ .]
— & [| [A
10" | | | | | | | | | | | | |
1 2 5 10 50 100 200 500 700 1000 2000 3000 5000

Tracks per event

NIM A 744, 54 (2014)

Discussion

e Adding parallel computing can provide a
significant speedup

* Not clear which architecture is best — can vary
depending on problem

o Difficult to optimally parallelize this problem —
memory accesses are not efficient for these
architectures

* Not an easy task to implement in current CMS
software!

Displaced Vertices

* Many of these theoretical models predict not
only displaced tracks, but displaced vertices —
an even clearer signal of new physics

» Displaced vertices
could arise from toor

jets, or black holes,
or other new
phenomena

50

y (cm)
T

=50

sample simulated
event with four

1 1 | S B | 1 1 1 I 1
. . -100 -50 0 50 100
displaced jets

-100

ldentifying Displaced Vertices

e We can quickly and easily identify these
displaced vertices by employing the Hough
transform a second time!

_ the second finds locations that
The first Hough transform correspond to intersections of the
identifies the tracks... tracks — the displaced vertices!

JINST 8 P10005 (2013)

Discovery of New Physics

» Let’s look at an example that we can’t find
currently

» The key is to be able to trigger on events with
these displaced topologies

Missing the Displaced Higgs?

» Consider a specific model:
H — XX — bbbb CMS Simulation

» Very difficult to detect with current triggers for
smaller m, (~125 GeV/c?) — losing the potential
for discovery!

Discovery Potential of New Triggers

* Currently, such events are very difficult to
trigger on

» With a parallel-based trigger, could increase
efficiency from <1% to ~30% at m, = 125 GeV —
bringing discovery within reach!

0.5
L " e ow oy .,
0.4 .
ws, ' s s 4 L ™
L] 5 .
LI
=, 0.3 E
=
g
= :
= 5o/ L1 Trigger
L1+MPC
i Best Single HLT
0.1
UD_EM hhhhhhhhhhh
0 100 200 300 400 500 60O

arXiv: 1405:2082 ™™

Efficiency

0.6

0.5

=
i

=
[

=
£

=
—

=
=

] " = ‘
¥ L1 Trigger
¢ L1+MPC
+ Best Single HLT
10 20 30 40 850 60

my (GaV)

Conclusions

e New tracking algorithms allow us not only to
improve time performance, but search for
entirely new models of physics not currently
accessible.

* Parallel computing make these algorithms
possible, but it is not an easy task to tell which
architecture is best or to implement them in the
software environment at LHC.

* Much work lies ahead, but the potential is
great.

