
Massively Parallel Computing at
the Large Hadron Collider up to
the HL-LHC

Paul Lujan

(on behalf of Valerie Halyo)

Princeton University

The Large Hadron Collider

 27 km circumference ring on France/
Switzerland border

 Design center-of-mass energy of 14 TeV

 Four major experiments: ATLAS & CMS (general
purpose), LHCb (b physics), ALICE (heavy ion)

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 2

The LHC Detectors

 Generally similar layout (except for LHCb)

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 3

ATLAS CMS ALICE LHCb

Inner tracker Si pixels & strips Si pixels Si pixels & strips Si pixels (VELO)

Outer tracker Straw tracker Si strips Time projection
chamber

Si strips, straws,
Cherenkov

Magnet 2T solenoid
outside tracker

3.8T solenoid
outside
calorimeter

0.5T solenoid Dipole, avg. field
≈ 0.5T

EM calorimeter LAr in lead/steel Lead tungstate
crystals

PbWO4 (γ) +
Pb/scintillator

Scintillators in
lead

Hadronic
calorimeter

Scintillators in
steel

Scintillators in
brass/steel

n/a Scintillators in
iron

Muons DT/CSCs and
RPCs in toroids

DT/CSCs and
RPCs in solenoid
return yoke

CSCs and RPCs
in dipole
magnet

Multiwire
proportional
chambers + GEM

CMS Slice

 Example particle signatures in CMS

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 4

Increasing Luminosity at the LHC

 Increased luminosity means increased pileup
(number of interactions per bunch crossing)

 Events become more challenging to reconstruct
as pileup increases

July 24, 2014 5 P. Lujan (for V. Halyo), INFIERI 2014

Run I (through 2012)

 Center-of-mass energy: 7-8 TeV

 Typical luminosity: 5 x 1033 cm-2 s-1, up to peak
of approx. 7 x 1033

 Bunch spacing: 50 ns (20 MHz collision rate)

 Typical pileup: ~25, up to peak of ~40

 Total delivered luminosity: ~30 fb-1

July 24, 2014 6 P. Lujan (for V. Halyo), INFIERI 2014

Run II (2015-2018)

 Center-of-mass energy: 13-14 TeV

 Typical luminosity: 1.5 x 1034 cm-2 s-1

 Bunch spacing: 25 ns (40 MHz collision rate)

 Expected pileup: average of ~40

 Total expected delivered luminosity: ~100 fb-1

July 24, 2014 7 P. Lujan (for V. Halyo), INFIERI 2014

Run III (2020-2022)

 Center-of-mass energy: 14 TeV

 Typical luminosity: 2 x 1034 cm-2 s-1

 Bunch spacing: 25 ns (40 MHz collision rate)

 Expected pileup: average of ~60

 Total expected delivered luminosity: ~300 fb-1

July 24, 2014 8 P. Lujan (for V. Halyo), INFIERI 2014

HL-LHC (2025-)

 Center-of-mass energy: 14 TeV

 Typical luminosity: 5 x 1034 cm-2 s-1

 Bunch spacing: 25 ns (40 MHz collision rate)

 Expected pileup: average of ~130

 Total expected delivered luminosity: ~3000 fb-1

 Major upgrades to all detectors to increase
physics capabilities, replace radiation-damaged
parts, handle increased luminosity, etc.

 Will require large computing efforts to handle
the volume of data, both online and offline

July 24, 2014 9 P. Lujan (for V. Halyo), INFIERI 2014

The Need for Parallel Computing

 Increase in clock speed,
which was fairly
constant, stalled out
around year 2000

 Need other ways to
obtain increased
performance

 Parallel computing:
multi-core, GPU
computing, many
integrated core (MIC)

July 24, 2014 10

courtesy r-bloggers.com

P. Lujan (for V. Halyo), INFIERI 2014

Massively Parallel Computing

 In contrast to multi-core computing, massively
parallel systems can feature 1000s of cores

◦ Individual cores are not as powerful, but the parallelism
gives an advantage

 GPU computing (e.g. Nvidia Tesla): use the stream
processors in a graphics processing unit (GPU) for
general-purpose computation

 MIC computing (e.g. Intel Xeon Phi): large number
of x86-based processor units in a single chip

 Require different approaches than regular CPU
programming

◦ Issues such as memory access become very important

July 24, 2014 11 P. Lujan (for V. Halyo), INFIERI 2014

GPU Computing: A Brief History

 2001: first programs using GPU for general
purpose computing

◦ Required translating the problem into a graphics
problem using DirectX/OpenGL

 2007: release of Nvidia CUDA

◦ Allowed GPU programming with nearly-standard C++
code

 2009-present: development of various
standards to simplify GPU programming

◦ OpenMP, OpenACC, OpenCL, etc…

July 24, 2014 12 P. Lujan (for V. Halyo), INFIERI 2014

Nvidia Tesla

 Tesla K40: Kepler architecture,
2880 thread processors @
745 MHz, 12 GB GDDR5
RAM @ 288 GB/s

July 24, 2014 13 P. Lujan (for V. Halyo), INFIERI 2014

Intel Xeon Phi

 Xeon Phi 7120P: Knights Corner architecture, 61
cores @ 1.24 GHz (up to 1.33 GHz), 16 GB DDR5
RAM @ 352 GB/s

 4-way hyperthreading

 512-bit AVX2 vector extensions

July 24, 2014 14 P. Lujan (for V. Halyo), INFIERI 2014

Using parallel computing: libraries

 Libraries built to take advantage of accelerators
already exist for many common packages

◦ e.g. for CUDA: libfftw → cuFFT, libblas → cuBLAS, NPP
(Nvidia Performance Primitives), etc.

 Very easy to implement: just drop into an
existing project

 Often can provide considerable speedup –
sometimes beneficial to use even if not so that
a computation can be done entirely on the GPU

July 24, 2014 15 P. Lujan (for V. Halyo), INFIERI 2014

Using parallel computing: directives

 Standards such as OpenMP or OpenACC can
provide simple but more customizable
acceleration.

 It can be as easy as (example in OpenACC):

#pragma acc kernels

for (int i=0; i<n; ++i) {

 …

}

 Compiler support still incomplete (e.g.,
OpenACC is not in gcc yet), but making rapid
progress

July 24, 2014 16 P. Lujan (for V. Halyo), INFIERI 2014

Using parallel computing: CUDA
 Define kernels that run on the GPU, copy memory to GPU as necessary,

and call them:
//example code from Nvidia -- developer.nvidia.com

__global__

void saxpy(int n, float a, float *x, float *y)

{

 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

int main(void)

{

 int N = 1<<20;

 float *x, *y, *d_x, *d_y;

// put data into x[] and y[]

 cudaMalloc(&d_x, N*sizeof(float));

 cudaMalloc(&d_y, N*sizeof(float));

 cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);

 // Perform SAXPY on 1M elements

 saxpy<<<(N+255)/256, 256>>>(N, 2.0, d_x, d_y);

 cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

July 24, 2014 17 P. Lujan (for V. Halyo), INFIERI 2014

Optimizing parallel code

 Not an easy task!

 For instance,

saxpy<<<(N+255)/256, 256>>>(N, 2.0, d_x, d_y);

 These two arguments are the number of blocks and
the threads per block.

 How to choose optimal number of threads per
block?
◦ The answer depends on the details of the hardware and

the problem

◦ Often trial and error is the only way

◦ Work on automating this optimization is in progress, but
still a long way away

July 24, 2014 18 P. Lujan (for V. Halyo), INFIERI 2014

Complications with directives

 Naïve use of directives like #pragma acc kernels
can often result in slower code than the non-
parallelized version!

◦ For example, the compiler doesn’t necessarily know
when it needs to copy the data between the host and
the device, so it will be conservative.

◦ This can result in a lot of additional unnecessary
copying.

◦ You’ll need additional pragmas like #pragma acc
data to instruct the compiler when it needs to copy
data and when it can keep the data on the device.

July 24, 2014 19 P. Lujan (for V. Halyo), INFIERI 2014

Parallel computing: summary

 Writing massively parallel programs has never
been easier.

 Libraries and directives make it very easy to get
started.

 However, you still need a good understanding of
the problem and the computational issues to
get best performance.

 Profiling tools to find which steps are slowest
are critical.

July 24, 2014 20 P. Lujan (for V. Halyo), INFIERI 2014

Advantages of Accelerators at LHC

 Easy to integrate hardware into existing
computing farms

 Relatively low cost

 Can be gradually integrated as resources are
available

 Can write software compatible with variety of
hardware setups

 Integrating these capabilities into the current
software is not always easy!

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 21

Parallel Computing at the LHC

 Examples of current projects

 Future plans

 A case study: tracking & triggering of displaced
tracks at CMS

July 24, 2014 22 P. Lujan (for V. Halyo), INFIERI 2014

GPU Acceleration of Tracking at ALICE

 Heavy ion collisions have a very large track
multiplicity

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 23

D. Rohr, CHEP12

GPU Tracking at ALICE

 CPU does pre- and post-processing of the tracks

 Actual track finding and fitting is offloaded to
the GPU

 Multiple CPU cores used to ensure GPU always
remains busy

 Run on relatively simple GPU hardware
(originally Nvidia GTX 295, later GTX 480)

 Overall increase of 3x speed

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 24

GPU Tracking: additional advantages

 Normally tracking in the TPC is local: the
chamber is divided into slices

 If only a small part of a track is in a given slice,
the track will not be reconstructed

 Global tracking allows the track to be
propagated between sectors for more efficient
reconstruction

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 25

GooFit: RooFit with GPUs

 RooFit – a standard ROOT-based framework for
performing a wide variety of fits

 Maximum-likelihood fits can become very
lengthy

 GooFit exports this calculation onto GPUs,
which can result in large speedups

◦ Two backends: CUDA and OpenMP

 Very similar to current RooFit interface

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 26

GooFit Example

 Time-dependent amplitude analysis of D0 →
π+π-π0

◦ Unbinned 4-D fit with about 40 signal parameters

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 27

R. Andreassen, CHEP2013

GooFit Speedup
Platform Time [s] Speedup

Original CPU 19489 1.0

Xeon E5520 OpenMP

1 thread

3056 6.4

Xeon E5520 OpenMP

24 threads

432 45.1

above + Nvidia Tesla

C2050

64 304.5

Intel i7-3610QM

OpenMP 1 thread

2042 9.5

Intel i7-3610QM

OpenMP 8 threads

407 47.9

above + Nvidia

GeForce 650M

212 91.9

Nvidia Tesla C2070 54 360.1

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 28

Future Tracking Plans

 Lots of research going into improving the
tracking at all LHC experiments

◦ Algorithms: CTF (Kalman filter), cellular automata,
tracklet, retina, pattern recognition, …

◦ Technologies: GPU, MIC, FPGA, …

 Improving tracking performance will make a L1
track trigger possible

 Will be a long road ahead, however…

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 29

Looking for New Physics

 So far, these examples have shown ways to
improve performance of existing algorithms.

 But parallel computing also gives us new
algorithms which we can use to look for entirely
new physics.

 As an example, let’s look at a different kind of
signature.

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 30

Displaced Tracks

 Consider particles which have a substantial lifetime,
so they travel a significant distance in the detector.

 Such an event would
be a clear and
unambiguous signal
of new physics!

 Decay could be into
leptons, jets, ...

 Possible signatures:
displaced tracks,
kinked/disappearing
tracks, delayed
tracks, etc.

 July 24, 2014 31

simulation of two long-lived

neutral particles decaying to

muons (left) and electrons (right)

P. Lujan (for V. Halyo), INFIERI 2014

Displaced Tracks: Theory

 A wide variety of theoretical models predict this
kind of signature:
◦ Hidden valley models

◦ Weakly R-parity-
violating supersymmetry
(SUSY)

◦ Split SUSY with long-
lived gluinos

◦ Z’ production and
decay

◦ “Little Higgs” models

 Even black holes could have such a signature – they
could have a significant lifetime in which they can
travel away from the primary interaction

July 24, 2014 32 P. Lujan (for V. Halyo), INFIERI 2014

Displaced Tracks: The Problem

 However, standard tracking algorithms
(especially at the trigger level) are not designed
to reconstruct tracks which are significantly
displaced like these.

 Efficiency falls off
rapidly above about
15 cm and is zero
by 30 cm.

 Somewhat driven by
tracker size, but also
by algorithm limitations.

July 24, 2014 33 P. Lujan (for V. Halyo), INFIERI 2014

CMS PAS EXO-12-038

Combinatorial Track Finder

 The standard track finding algorithm at CMS
and ATLAS is the Combinatorial Track Finder
(CTF).

 Well-established, reliable algorithm.

 However, the “combinatorial” in the name
suggests the problem…

July 24, 2014 34 P. Lujan (for V. Halyo), INFIERI 2014

CTF: Seeding

 Form seeds by taking all possible pairs, then
looking for a third compatible hit

 If a triplet is found, it is used as the starting
trajectory for track finding

July 24, 2014 35

pixel layers

P. Lujan (for V. Halyo), INFIERI 2014

CTF: Finding

 The trajectory is then propagated out through
the layers and compatible hit(s) are attached

July 24, 2014 36

one seed may produce

multiple candidate tracks…

others may not be

successful

silicon strip layers

P. Lujan (for V. Halyo), INFIERI 2014

CTF: Fitting and Cleaning

 Once all of the hits have been found and
attached to the track, a final Kalman fitter step
is performed to get the best fit of the track
parameters using all of the hit information.

 Tracks which share a large number of hits are
then cleaned by selecting the single best fit
track.

July 24, 2014 37 P. Lujan (for V. Halyo), INFIERI 2014

CTF: Iterative Tracking

 The CTF also uses “iterative tracking” to reduce
the number of combinations.

◦ Early iterations look for the easiest tracks to
reconstruct: high-momentum tracks with seeds in the
pixel layers (better resolution).

◦ The hits from these tracks are then removed and the
search can proceed to lower-momentum tracks and
tracks with seeds in the outer strip layers (including
potentially displaced tracks).

July 24, 2014 38 P. Lujan (for V. Halyo), INFIERI 2014

The CMS Trigger

July 24, 2014 39

40 MHz
Collision Rate

Level-1

Trigger (L1)

High-Level

Trigger (HLT)

100 kHz
Post-L1 Rate

100 Hz
Final Rate

 The HLT performs a nearly full
reconstruction of the event
and must do so in a very
limited time.

 Uses iterative tracking very
similar to as previously
described, but only in
regions of interest around
L1 calorimeter/muon hits.

P. Lujan (for V. Halyo), INFIERI 2014

CTF: Online and Offline

 As a consequence of the limited amount of time
available at the HLT, the online CTF does not
include a step to reconstruct displaced tracks –
it’s too expensive!

July 24, 2014 40

Only bold layers are

used for seeding

Only tracks with a transverse

impact parameter < 0.5 cm

(green circle) are reconstructed

We could miss entirely events like these!

P. Lujan (for V. Halyo), INFIERI 2014

Consequences for Displaced Tracks

 Especially for jets (especially for models where
the parent particle has a relatively low mass), it
is difficult to construct an effective trigger
algorithm.

 This problem will only get worse with increased
pileup.

 Potential new physics might be missed!

July 24, 2014 41 P. Lujan (for V. Halyo), INFIERI 2014

Hough Transform

 Try a Hough-transform based tracking approach

 Hough transform: describe track in terms of
parameters and define parameter space

July 24, 2014 42

x

y

φ0

x

y

r

φ

d0

• 2 parameters can define a curved track from origin, or a

displaced straight track

• 3 parameters necessary for a displaced curved track

• 5 parameters (full set of track parameters) for a 3-D track

P. Lujan (for V. Halyo), INFIERI 2014

Hough Transform: cont’d

 Each hit in the original space then becomes a
curve in parameter space – the family of curves
that pass through that hit

July 24, 2014 43

x

y

d

φ

P. Lujan (for V. Halyo), INFIERI 2014

Hough transform: simple example

 Begin with hits from 500 simulated curved
tracks (left).

 Apply the Hough transform to get the
parameter space (right).

July 24, 2014 44

q/p

f

P. Lujan (for V. Halyo), INFIERI 2014

Hough transform: simple example (2)

 Finding the maxima in the parameter space
reconstructs the original tracks.

 In this example,
efficiency
is about 85%.

 Highly parallelizable –
the conversion of each
hit into parameter space
can be done separately

 Inherently accounts for
differing resolution of different hits

July 24, 2014 45 P. Lujan (for V. Halyo), INFIERI 2014

Performance Testing

 How can we determine which architecture is
the best?

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 46

Implementation of Hough Transform

 CPU version (included for comparison) on Intel
i7 using OpenMP for parallelism

 GPU version implemented with CUDA and
tested on Tesla K20c

 Xeon version tested on dual-socket Intel Xeon
CPU (E5-2697v2) and Xeon Phi coprocessor

◦ Code written to allow compiler to perform automatic
vectorization

◦ In terms of power consumption, the dual-socket Xeon
CPU is roughly equivalent to Xeon Phi

 Size of event is small, so no problems with data
transfer

July 24, 2014 47 P. Lujan (for V. Halyo), INFIERI 2014

Results

July 24, 2014 48 P. Lujan (for V. Halyo), INFIERI 2014

NIM A 744, 54 (2014)

Discussion

 Adding parallel computing can provide a
significant speedup

 Not clear which architecture is best – can vary
depending on problem

 Difficult to optimally parallelize this problem –
memory accesses are not efficient for these
architectures

 Not an easy task to implement in current CMS
software!

July 24, 2014 49 P. Lujan (for V. Halyo), INFIERI 2014

Displaced Vertices

 Many of these theoretical models predict not
only displaced tracks, but displaced vertices –
an even clearer signal of new physics

 Displaced vertices
could arise from
jets, or black holes,
or other new
phenomena

July 24, 2014 50

sample simulated
event with four
displaced jets

P. Lujan (for V. Halyo), INFIERI 2014

Identifying Displaced Vertices

 We can quickly and easily identify these
displaced vertices by employing the Hough
transform a second time!

July 24, 2014 51

The first Hough transform

identifies the tracks…

the second finds locations that

correspond to intersections of the

tracks – the displaced vertices!

P. Lujan (for V. Halyo), INFIERI 2014
JINST 8 P10005 (2013)

Discovery of New Physics

 Let’s look at an example that we can’t find
currently

 The key is to be able to trigger on events with
these displaced topologies

July 24, 2014 P. Lujan (for V. Halyo), INFIERI 2014 52

Missing the Displaced Higgs?

 Consider a specific model:
H → XX → bbbb

 Very difficult to detect with current triggers for
smaller mH (~125 GeV/c2) – losing the potential
for discovery!

 July 24, 2014 53

CMS Simulation

P. Lujan (for V. Halyo), INFIERI 2014

Discovery Potential of New Triggers

 Currently, such events are very difficult to
trigger on

 With a parallel-based trigger, could increase
efficiency from <1% to ~30% at mH = 125 GeV –
bringing discovery within reach!

July 24, 2014 54 P. Lujan (for V. Halyo), INFIERI 2014
arXiv: 1405:2082

Conclusions

 New tracking algorithms allow us not only to
improve time performance, but search for
entirely new models of physics not currently
accessible.

 Parallel computing make these algorithms
possible, but it is not an easy task to tell which
architecture is best or to implement them in the
software environment at LHC.

 Much work lies ahead, but the potential is
great.

July 24, 2014 55 P. Lujan (for V. Halyo), INFIERI 2014

