Radiation Testing of Versatile Transceiver for Versatile Link Project

Results and plans

Sarah Seif El Nasr-Storey
Opto Working Group Mini Workshop
CERN, 21st March 2014
Outline

- Introduction
- Results from radiation test
- Conclusions
First radiation test of complete Versatile Transceiver
- 20 MeV neutron beam in Louvain-La-Neuve, total dose of \(\sim 1 \times 10^{15} \) n/cm\(^2\)

Devices tested

<table>
<thead>
<tr>
<th>DUTs</th>
<th>Tx</th>
<th>ROSA</th>
<th># Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM VTRx</td>
<td>1310 nm EEL</td>
<td>InGaAs</td>
<td>2</td>
</tr>
<tr>
<td>MM VTRx</td>
<td>850 nm VCSEL</td>
<td>GaAs</td>
<td>2</td>
</tr>
</tbody>
</table>

- SM VTRx:
 - 1310 nm EEL InGaAs
 - 2 tested

- MM VTRx:
 - 850 nm VCSEL GaAs
 - 2 tested

Device irradiated in UCL November 2013

VTRx on irradiation PCB
- First radiation test of complete Versatile Transceiver
 - 20 MeV neutron beam in Louvain-La-Neuve, total dose of ~ 1×10^{15} n/cm2
- Sensitivity of VTRx to SEUs (on receiver side) measured during the test
- Expected increase in BER during irradiation because of SEUs

<table>
<thead>
<tr>
<th>Time Elapsed [hrs]</th>
<th>OMA [dBm]</th>
<th>Pre-Irradiation</th>
<th>Increasing Fluence</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Elapsed [hrs]</th>
<th>OMA [dBm]</th>
<th>Pre-Irradiation</th>
<th>Increasing Fluence</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Error Cross-Section [n/cm²]
Sensitivity of ROSAs to SEUs

- Sensitivity of VTRx to SEUs (on receiver side) measured during the test
 - Expected increase in BER during irradiation because of SEUs

- Error cross-section comparable with other test results
 - same ROSAs tested in PSI proton beam-line
Sensitivity of ROSAs to SEUs

- Sensitivity of VTRx ROSAs to SEUs changes during the irradiation
 - bigger change in SM VTRx compared to MM VTRx

![Graph showing sensitivity of ROSA vs time elapsed]

Gap in Data

caused by change in responsivity?
Sensitivity of ROSAs to SEUs

- Sensitivity of VTRx ROSAs to SEUs changes during the irradiation
 - bigger change in SM VTRx compared to MM VTRx

- RSSI current measurement used to calculate change of responsivity of ROSAs during irradiation

caused by change in responsivity?
Sensitivity of ROSAs to SEUs

- Change in responsivity of devices comparable with pin photodiodes tested

Would still only predict ~ 1dB change in the sensitivity of the devices to SEUs during irradiation
- Change in responsivity of devices comparable with pin photodiodes tested

- Would still only predict ~ 1dB change in the sensitivity of the devices to SEUs during irradiation

- Points to change in leakage current being more important than previously thought?
- LI curves of transmitters collected during irradiation
 - gap in the data due to problems with set-up during test

- Expected change in performance of transmitters: increase in threshold current and decrease in slope efficiency

- Fraction of the damage anneals post-irradiation
Effect of radiation on transmitter, DC

- Are predictions for the expected change in threshold current in VTRx transmitters from irradiations on components measured DC-only of the VTRxs accurate?
 - transmitters from the same manufactures irradiated in the same test
 - comparison between the change in threshold current in both VTRx and transmitter therefore possible
- Are predictions for the expected change in threshold current in VTRx transmitters from irradiations on components measured DC-only of the VTRxs accurate?
- transmitters from the same manufactures irradiated in the same test
- comparison between the change in threshold current in both VTRx and transmitter therefore possible
Effect of radiation on transmitter, DC

- Can radiation tests on MMVCSELs predict how the voltage headroom changes during exposure to radiation?
 - Voltage headroom problem
 - bias current that the GBLD is capable of supplying to the transmitter is limited by the voltage headroom of the chip

![Graph showing bias current setting vs. bias voltage for GBLD v4.1 and v5 at Vdd = 2.5 V, T = 10°C. The graph includes a legend for the fraction of final bias current and bias current settings.]
- Can radiation tests on MM VCSELs predict how the voltage headroom changes during exposure to radiation?

 - Voltage headroom problem
 - bias current that the GBLD is capable of supplying to the transmitter is limited by the voltage headroom of the chip
 - observed as saturation in the LI curve of the VTRx

![Graph showing the effect of radiation on transmitter, DC voltage headroom.](image)
Effect of radiation on transmitter, DC

- Can radiation tests on MM VCSELs predict how the voltage headroom changes during exposure to radiation?
 - Voltage headroom problem
 - bias current that the GBLD is capable of supplying to the transmitter is limited by the voltage headroom of the chip
 - observed as saturation in the LI curve of the VTRx

 ![Graph of LI curve showing saturation point](image)

 - Expect to see a change in the saturation point of the MM VTRx during irradiation
 - can we use the information from the VI curves of irradiated transmitters to predict how the saturation point changes?
Effect of radiation on transmitter, DC

- Voltage at which the GBLD head-room is no longer sufficient extracted from the pre-irradiation data (V_{max})
- Voltage at which the GBLD head-room is no longer sufficient extracted from the pre-irradiation data (V_{max})

- Compare bias current at (V_{max}) from VI curves of transmitters to saturation point from LI curves of MM VCSELs during irradiation
 - trends are the same for both devices
 - can use VI data of MM VCSELs to predict change in saturation point of MM VTRxs
- Assumption has always been that the spec for the slope efficiency of the transmitter is such that no additional radiation penalty is required:
 - transmitters threshold current and slope efficiency change during irradiation
 - OMA depends on both
 - can we maintain the minimum OMA during irradiation?
 - if not, can we adjust the settings of the VTRx to compensate?

\[
\text{OMA} = P_1 - P_0 = I_{\text{mod}}\eta \Rightarrow \eta = \frac{OMA}{I_{\text{mod}}}
\]

\[
\frac{OMA}{I_{\text{mod}}} \geq \eta_{\text{min}}
\]
Effect of radiation on transmitter, AC

- Assumption has always been that the spec for the slope efficiency of the transmitter is such that no additional radiation penalty is required:
 - transmitters threshold current and slope efficiency change during irradiation
 - OMA depends on both
 - can we maintain the minimum OMA during irradiation?
 - if not, can we adjust the settings of the VTRx to compensate?

- Tried to change the transmitter settings (I_{mod}, I_{bias}) during the test with information obtained from the LI curves to maintain a “good” eye
 - if we do nothing (i.e. default settings)
 - worst in SM case than MM case

\[
OMA = P_1 - P_0 = I_{mod} \eta \Rightarrow \eta = \frac{OMA}{I_{mod}}
\]

\[
\left. \frac{OMA}{I_{mod}} \right|_{irrad} \geq \eta_{\text{min}}
\]
- Tried to change the transmitter settings (Imod, Ibias) during the test with information obtain from the LI curves

Default Settings

- SM_VTRx_A: Ibias = 24.08 mA, Imod = 20.000 mA
 - Fluence = 1.2e+15 n/cm²

- MM_VTRx_B: Ibias = 6.96 mA, Imod = 6.000 mA
 - Fluence = 1.6e+15 n/cm²

Optimized Settings

- SM_VTRx_A: Ibias = 40.08 mA, Imod = 20.000 mA
 - Fluence = 1.18e+15 n/cm²

- MM_VTRx_B: Ibias = 6.96 mA, Imod = 6.000 mA
 - Fluence = 1.55e+15 n/cm²
Effect of radiation on GBLD v4

- Checked for SEUs in the GBLD during irradiation
 - GBLD registers read at regular intervals during the test and compared against “default” values

![Graph showing data for different GBLD registers during pre-irradiation, during-irradiation, and post-irradiation.](image)
Effect of radiation on GBLD v4

- Checked for SEUs in the GBLD during irradiation
 - GBLD registers read at regular intervals during the test and compared against “default” values

- Clearly see errors in the GBLD during irradiation
 - error cross section: 1.2×10^{-14} errors/n/cm2
 - other devices behaved in a similar manner

Further away from the beam
Effect of radiation on GBLD v4

- Checked for SEUs in the GBLD during irradiation
 - GBLD registers read at regular intervals during the test and compared against “default” values
 - Clearly see errors in the GBLD during irradiation
 - error cross section: 1.2×10^{-14} errors/n/cm2
 - other devices behaved in a similar manner

- Checked whether these errors were “detectable” by any of the on-line measurements we were doing

Further away from the beam
Conclusions

- First radiation test on full VTRx object
 - SM and MM variants with GBLD v4.1 and GBTIA v2 tested
 - transmitters degrade in the same manner predicted by radiation tests carried out on the passive components
 - change of saturation point of MM VTRxs can be predicted from the change in the VI curves of the transmitters during irradiation
 - leakage current of the photodiodes has a higher than expected impact on the sensitivity of the ROSAs to SEUs
 - SEUs observed in the GBLD

- Future Plans
 - Qualification of lasers and photodiodes for production of VTRxs
Back-Up Slides