Silicon Photonics

- Use of silicon substrate and ASIC production techniques to pattern waveguide and optical field manipulating structures
 - Allows the fabrication of optical modulators and high level of integration of optical circuits like couplers and gratings
- Promise of lower power & cost modulation of light
 - But still need a source of optical power (that could be located remotely)
- Sparked major interest in the optical communications industry
 - For chip-to-chip interconnects up to telecom long-haul applications
 - Heavy weights like IBM, Intel, as well as smaller specialist companies like Luxtera (Molex), Kotura (Mellanox) are very active in the field

Silicon Photonics II

Mod

Silicon photonics for HEP?

- Basic questions come up again
 - e.g. Radiation resistance
- Have been working on assessing some basic aspects of the technology
 - Using devices obtained from Industrial partner and Academic partner
 - Sarah will present some irradiation results later today
 - Also keen to assess how easy it is to design own structures
 - Using MPW services similar to what we're used to for ASICs
- EU funded fellow appointed for a three-year study of basic technology
 - Joint CERN-Intel programme
 - Assess feasibility of use of Silicon photonics technology in HEP

ICE-DIP overview

- Intel-CERN European Doctorate Industrial Program
 - European Industrial Doctorate scheme hosted by CERN and Intel Labs Europe.
- ICE-DIP offers research training to 5 Early Stage Researchers (ESRs) in advanced Information and Communication Technologies (ICT).
- The technical goal of this program is to research and develop unparalleled capabilities in the domain of high throughput, low latency, online data acquisition.
 - Many-core processors for data acquisition
 - Future optical interconnect technologies
 - Reconfigurable Logic
 - Data Acquisition Networks.

ICE-DIP overview (2)

Partners:

- Start Date: 1 February 2013
- Duration: 48 Months
 - ESR contracts are for 36 months each
- EU Funding: 1.25 M€
 - For people (training,travel), not equipment

ICE-DIP work packages

- Use of silicon photonics technology in data transfer systems
- 2. A data pre-processing system closely integrating both microprocessors and reconfigurable logic (FPGA)
- 3. High speed networking for data acquisition systems
- 4. Optimizing the latency and energy characteristics of data transfer in computing platforms and accelerators
- 5. Enabling efficient data processing on accelerators optimization, parallelization, vectorization

ICE-DIP WP1: Silicon Photonics

- Investigation of applicability of silicon photonics technology in data transfer systems for future generations of high-energy particle physics detector systems
 - Systems aspects, Radiation hardness investigation
- Partners are DCU and Intel Labs Santa Clara
- Foreseen to spend a large fraction of the 36 months away from CERN
 - DCU: 4 months
 - Intel Labs Santa Clara: 16 months
- Major practical goal is the design of a silicon photonics circuit to be tested in a radiation environment

Plans for 2014

Pigtailing

- Further trials for vertical- and butt-coupling
- At least two device families
- At least two packaging institutes
- Radiation hardness evaluation
 - X-rays (CERN, April/May), Neutrons (UCLouvain, June/July)
 - At least two device families
 - Device-level simulation of damage
- Modulator design, fabrication, and characterization
 - Fellow Secondment at Intel Labs, Santa Clara starting ~June
 - Target submission to ePIXfab in November
 - Test chip containing basic structures and a modulator
 - Lab equipment to be acquired to enable chip-level characterization
 - High-speed probing, fibre alignment