
Reliability testing of VCSELs, 
Transceivers and ASICs.  

History, status and plans 
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Outline 

• VCSEL failures in ATLAS 
– Reminder TL failures 

– Controlled experiments to determine cause of 
damage 

– Outstanding mysteries 
• TL and AOC VCSELs 

• Plans for future reliability testing 
– VCSEL 

–  Transceiver  

– ASICs 
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Failure Rates in ATLAS Operation 
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STEM Failed Channel 
TL VCSEL array after FIB cut 

DBR 

MQW 

Oxide 

Defects at edge of Oxide  
DBR  active MQW region 
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More Controlled Tests 

• Aged VCSEL array in 70C/85% RH with 
regular power measurements and EL 
imaging. 

• Stopped as soon as significant 
decrease in power detected. 

• EL image shows 4% of area is dark. 

• Subsequent TEM analysis (next 
slides). 
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Plan View TEM 

• Dislocations in dark region from EL 

– Two dislocations emanating from tip of Oxide. 
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Zoom 



X-Section TEM 

• X-section views 

– after thinning to ~ 1.8 
um (“thick”). 

 

 

– after further thinning 
to ~ 0.8 um. This 
allows tracing of 
defects. 
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Tracing Defects 

• line dislocations starting 
from oxide tip (crack?). 

• traveled down from oxide 
aperture  active region 
below, and started the 
DLD network. 

• Note lines travel up 
before looping down 
(follow current wind). 
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Top View (PV)

Side View (thick)

Side View (thin)

Delamination
Oxide aperture

Active region

n-DBR

p-DBR

Thick section: 1.84 µm

Thin section: 0.84 µm

0.5 µm



Remaining Mysteries -1 

• Compare lifetime data from TL VCSELs in ATLAS USA-15 
with accelerated ageing tests (ULM). 
– MTTF in USA-15 is lower than predicted by model fitting ULM 

data by factor 4 to 6. 
– Null hypothesis that ULM and USA-15 data described by 

common parameters for the acceleration model excluded at 
90%. 

• Compare controlled experiment in SR1 with USA-15. 
– 4 TL arrays operated in SR1 for more than 500 days. 
– Only 1 channel died. 
– Inconsistent with observed MTTF in USA-15, null hypothesis of 

same MTTF in SR1 as USA-15, gives p-value 8.3 10-6. 

  

Tony Weidberg Opto mini workshop March '14 9 



Tony Weidberg Opto mini workshop March '14 10 

Remaining Mysteries - 2 

• Decrease in power for AOC arrays in USA-15 

• Measure power using current in p-i-n diode 
on detector. 

– Note we do expect significant decrease in 
responsivity from radiation damage. 

– See similar decrease for all barrel layers  see 
slide  

– incompatible with radiation damage? 

 



p-i-n Diode Radiation Damage 

• Decrease in responsivity ~ 
30% with relatively low 
fluence than plateaus. 

– 24 GeV protons 

• Fluence seen by inner 
barrel ~ 0.06 10 14 n cm -2  
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AOC arrays in USA-15 
Current measured by p-i-n diode on detector 

Layer 3 at largest radius  
smallest fluence 

Will Kalderon 



Remaining Mysteries - 3 

• Long term monitoring of optical power for 
AOC TXs in SR1 using LAPD (measure power 
from all 12 channels). 

• Do not reproduce decrease of 10%/year seen 
in USA-15  slides. 
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T correction fit 

Temperature Correlation 
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AOC  TX DT>1 in a day (hence missing days) 
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AOC in SR1 

16 

O
p

ti
ca

l P
o

w
e

r 
(m

V
) 

Time (days) 

Steve McMahon 



VCSEL Testing Plans 

• Standard damp heat tests 
– 1000 hours, 85C/85% RH. 

– Drive current 10 mA dc 

– Measure optical power continuously. 

– Aim for much higher statistics than we have done 
in the past  learn about infant mortality and 
random failure rates as well as lifetime. 

– So far we have tested 2 VCSELs, would like to do 
200 devices?  
• Have equipment to do batches of 80 devices. 
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Transceiver Tests 

• Monitor link performance while operating at 
elevated temperatures. 

• Look for evidence of degradation using 

– Eye diagrams 

– BER scans 
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Eye Diagrams 

• Use Digital 
Communication Analyser 
to measure eye diagrams 
– We are getting our DCA 

firmware upgraded to 
allow testing at a bit rate 
of 4.8 Gbits/s. 

– Determine many 
parameters, e.g. 
horizontal and vertical 
eye opening, rise and fall 
times, noise, random and 
deterministic jitter. 
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Equipment for BER Scan 

• FPGA 

– Generates PSRB data 

– Measures BER 

• Loopback test, e.g. transceiver VTRx to receiver VTRx. 

• Computer controlled optical attenuator to allow scan of BER 
vs OMA. Has a 10% and 90% tap to allow for power 
measurement during BER scan. 

• Optical switch to allow many channels to be measured. 

• We are getting a copy of CERN VL system so we can use their 
firmware and software. 
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BER System 
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FPGA 
VTRx 

Optical 
attenuator 

Power 
Meter VTRx 

Optical 
Switches 

Loopback tests 
Optical switches allow many VTRx to be tested  in 
an environmental chamber.  



BER Scans 

• Measure BER vs OMA 
(optical modulation 
amplitude). 

• Define minimum OMA 
to achieve BER = 10-12. 

• Measure this during 
continuous operation 
at elevated 
temperature. 

• Curves show example 
BER scans with and 
w/o beam. 
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Chip Reliability 

• What is there to worry about? 

• Failure Mechanisms 

• Statistical analysis PoF 

• Plans for testing GBTx (similar study for 
ABC130).   
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Why worry? 

• Traditionally failures in HEP not dominated 
by ASIC reliability 

– Connectors, solder, wire bonds, cracks in tracks 
and vias, capacitors, power supplies 

– Non-ideal scaling in DSM processes 

• Aggressive designs target optimal performance 

• Voltage decreases insufficient to compensate density 
increase  higher T  lower reliability. 
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FA Webinar- Cheryl Tulkoff 
(slide from J. Bernstein) 
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ASIC Reliability 

• Lifetime tests at different T ( low and high) 
and elevated V 

• Fit model parameters  extrapolate MTTF to 
use case (see backup slides for details). 

• Start with ATLAS pixel FE-I4 

• Test GBTx when large numbers available 
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Summary & Outlook 

• “If you think safety is expensive, try having an 
accident”  

• Plenty of painful experience in ATLAS  must perform 
rigorous testing before production. 

• Still trying to understand VCSEL failures in ATLAS 

• Plan rigorous campaign to understand reliability 
for phase II upgrades for ATLAS/CMS 
– VCSELs 

– Transceivers 

– ASICs 
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BACKUP SLIDES  
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Chip Reliability 
AUW: ITK Opto-electronics, Electrical 

Services and DCS: 14/5/13 

Steve McMahon & Tony Weidberg 
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Chip Reliability 

• What is there to worry about? 

• Failure Mechanisms 

• Statistical analysis PoF 

• Plans for testing GBTx (similar study for 
ABC130).   
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Why worry? 

• Traditionally failures in HEP not dominated 
by ASIC reliability 

– Connectors, solder, wire bonds, cracks in tracks 
and vias, capacitors, power supplies 

– Non-ideal scaling in DSM processes 

• Aggressive designs target optimal performance 

• Voltage decreases insufficient to compensate density 
increase  higher T  lower reliability. 
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FA Webinar- Cheryl Tulkoff 
(slide from J. Bernstein) 
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Physics of Failure (PoF) 

• Assumption of single dominant damage 
mechanism can lead to wrong extrapolation of 
lifetimes from accelerated tests. 

• PoF aims to understand different failure 
mechanisms 
– Fit model parameters to data for each damage 

mechanism 
– Combine results to predict reliability at operating 

conditions 
– Health warning: competing models for some damage 

mechanisms can give very different extrapolations to 
operating conditions. 

33 



Time Dependent Dielectric 

Breakdown (TDDB) 

 
• In DSM processes E fields over 

gate oxides  ~ 5 MV/cm cf 

breakdown fields of  > ~ 10 

MV/cm. 

– Gradual degradation  later failures 

• Acceleration model 

– Mean Time to Failure (MTTF) 

– MTTF=A×10-βE exp(-Ea/kT) 

– Example fits look ok but activation 

energy not constant?  next slide 

–  can’t fit to single failure mechanism!  

Holes injected into 
oxide  Stress 
Induced leakage 
currents by 
tunnelling  
breakdown  
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TDDB Fits  
• Fits to Voltage (E field) 

and T look ok but 
estimated value of Ea 
depends on E ? 

 

 
MTTF 
vs E 

MTTF  
vs 1/T 

Fitted Ea not constant! 
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Hot Carrier Injection (HCI) 

• Non-ideal scaling  larger E fields  “hot” 
carriers can overcome barrier between Si and 
gate oxide 

– Trapped charges lead to changes in VTh  and gm 

– Eventually lead to failure 

– t = c (Isub)-m   

– T dependence because at low T electron mfp 
longer  acquire more energy in E field  
impact ionization. 
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HCI 

• Example fits to 
threshold shifts. 

• Typical fit values  

– m ~ 3 

• Also need to consider T 
variation. 

• Shift Min Vcc 
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Electro-migration (EM)  

• High current densities, force exerted by electrons large enough to 
cause diffusion of metal ions in the direction of the e flow. 
– Creates voids  increases R  thermal runaway  open circuit 
– Excess build up of ions at the anode can give short circuit 

• Very sensitive to material, doping, grain boundaries etc… 
• EM is thermally activated, T gradients  flux divergences. 
• Best model 

 
– Typical values : Ea=0.6 eV and n ~ 2. 
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Other Mechanisms 

• NBTI (Negative Bias Temperature Instability) 

– Degradation (Vth/Gm shift) occurring due to 
negative biased BT (bias temperature) stress in 
PMOS FETs 

• Stress migration 

– CTE mismatch can cause stress even with no 
current. 

• Assembly & packaging 
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Combining Failure Rates 

• Common method is just to assume exponential 
distributions 
– Total failure rate:  

– But we know that failure distributions aren’t exponential ! 

• Failure distributions better modelled by Weibull or log-
normal distributions. 

• Finally we don’t actually want MTTF we need MTT01 
(1% failure) or MTT10 (10% failure). 
– Need to combine distributions correctly from different 

failure mechanisms. 

– Determine MTT0X numerically 
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Weibull Distribution (from Wiki) 

 

 

• Commonly used distribution in reliability theory 

• m < 1 indicates that the failure rate decreases 
over time significant “infant mortality”. 

• m = 1  failure rate is constant over time, i.e. 
random failure. 

• m > 1 failure rate increases with time. This 
happens if there is an "aging" process 
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Compare Distributions 

• Compare exponential, Weibull and log-normal 

• Note Weibull and log normal totally different from 
exponential for small x 

– This is just the region we are interested in! 
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Measuring MTTF 

• How well can we determine MTTF in an AL 
(Accelerated Lifetime) test? Depends on 

– Sample size 

– Weibull shape parameter n. 

• Example Fits 

– Assume n=2 (pessimistic)  

 

– Assume n=10 (optimistic)  
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Sample size % error t_m

10 3.8

30 2.0

50 1.7

Sample size % error t_m

10 18.9

30 10.0

50 8.2



Determining Model Parameters 

• Brute force: Run ALT for matrix of different T and 
V and fit data to get model parameters. 
– Too many tests  too slow/expensive. 

• Smarter approach 
– High T/High V  TDDB 

• Vary T  Ea, vary V  exponent c 

– Low T/High V  HCI 
• Vary T  Ea2, vary V  g2  

– High T/low V  EM dominates 
• Vary T  Ea3 
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Determining (V,T) Grid  

• Use case assumed: V=1.2V, T=20C. 

• Assumed 3 damage mechanisms have equal rates at 
use condition (pessimistic) 

• (V,T) Matrix designed to determine model 
parameters with minimum number of tests. 

– EM: Temp values 

– TDDB: Voltage values:    

– HCI:  
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(V,T) Grid 

• Simplify analysis 
– Can we factorise different damage mechanisms in fits? 

– Look at purity 

– Not perfect? 

 

 

– Acceleration rates:  
• high so that tests last not longer than ~1000 hours 

• Not too high so that other mechanisms are dominant and 
extrapolation to use case is too large. 

• AF in range 103 to 2 105. 
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EM TDDB HCI

88.3 11.7 0.0

0.0 95.1 4.9

0.0 11.6 88.4



Errors on Acceleration Factors from Fits 

• EM fits for Ea in 
exp(- Ea /kT) 

 

• TDDB fits for c 
in vc 

• HCI fits  
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% error MTTF % error AF

2 7.5

4 15.0

8 12.7

10 30.8

20 95.8

% error MTTF % error AF

2 4.5

4 8.8

8 17.9

10 21.9

20 47.6

MTTF error % AF error %

2 3.8

4 7.6

8 15.5

10 19.0

20 42.3

MTTF error % AF error %

2 4.9

4 9.8

8 20.1

10 24.7

20 59.9

T variation 
 Ea2 

V variation 
 g 



Next Steps 

• Global Fits: 

– Use all (V,T) data in one fit 

– Build reliability model  plot predicted 
cumulative failure rates at some reference point. 

– Predict MTT10 and MTT01 failure 

– Note: eventually this type of information will be 
used to decide whether we need redundancy. 
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Practical issues  

• Can we use this (V,T) range (TBD with Paulo). 
• Need minimum 11 grid points and between 10 and 30 

chips per point. 
• Also need to do quick tests with fewer chips to determine 

centres of the grids. 
– Check that MTTF is in reasonable range (1 to 1000 hours). 

• Number of chips required in range 150 to 400. 
• Use several environmental chambers 

– Combine tests at same T but different V conditions  need 
between 3 and 7 environmental chambers depending if all 
tests are done in parallel or some in series. 

– Hope to find new collaborators … 
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LTx in SR1 

• LTx optical power. 

• No T correction 

• Initial decrease 
~1%. 

– No burn-in 
preformed for 
this array  
probably ok but 
should run longer 
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Accelerated Aging Tests  
• Measure Mean Time To Failure at several elevated 

temperature/current and RH use Arrehnius 
equation for Acceleration Factor  from (I2,T2) to 
(I1,T1) Activation energy: EA and exponential for 
relative humidity (RH). 
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Fit Results 
EA=0.72 eV 
a = 0.059 (/%) 
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VCSELs in air show decrease in 
width with time and then 
plateau 

VCSELs in dry N2 show no 
decrease in width with time  



 EBIC comparison working & Failed 
channels TL VCSEL array 

• All taken with same SEM settings: 10KV spot 5 (roughly same mag 4700X and 5000x) 
• Original Image LUTs stretched to accentuate EBIC changes across VCSELs 
• Only Ch 10 shows distinct EBIC minima (dark spots) within the emission region 
• Ch 06 & 08 show some inhomogeneity but no distinct minima  
• Small dark speckles are surface topography 

Working Dead 
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STEM Unused Channel 
TL VCSEL array after FIB cut 

oxide 

MQW 
(active region) 

Top DBR 

Bottom 
DBR 

Analysis by EAG 
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Example Spectra 
• Air ~ 50% RH 

– Loss of higher order 
modes visible 

  

• Dry N2 

– Higher order modes 
very similar 
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