LightABLE Production Status

CERN, Mini opto-workshop 21/3/14

Changes Since Design Review

Essential:

- Make it easier for Infineon SMC connector to connect to LTx in USA15
- Improve thermal management
- Highly desirable: Allow option of decreasing optical power from LTx in case of saturation for DORIC4A.
- Mechanical reliability, consider use of underfill for LightABLE BGA.

Mechanical Changes

- Make mate/demate with Infineon SMC easier.
 - Shortened length of MT guide pins.
 - Added groove near end that was cut to help with gluing. End sticking out is the uncut end.
 - Use long guide pins in jig during reflow. Ensures that guide pins will be in the correct location and pointing the correct way.

Underfill

- Decided against use of underfill for BGA
 - Mismatch in CTE.
 - Very little insertion force required.
 - 100 mate/demate cycles with monitoring of power every
 10 cycles → no changes
 - Thermal cycling: no change in power.

Cooling

- Thermal path from LightABLE to front panel via Thermal Gap Filler (3 Wm/K)
- OSA analysis $\rightarrow \Delta T$ from junction to ambient =20°C (\rightarrow next slide).

01

- Measure Peak wavelength λ_p
- Scan Mark: Space Ratio (MSR) and measure λ_{D}
- Plot λ_p versus MSR
- Fit slope and extrapolate to 50%.
- Use calibration $d\lambda_p/dT \rightarrow \Delta T$
- Fit Results variable in quality but reasonable consistency

Mini Opto-Workshop 21/03/2014

We can use a microprocessor to drive the LightABLE Engine's I2C inputs, and the SPI lines currently used for the MDACs can be used to drive the $\mu Proc$

But the MDACS we must still give the right output current for the interface circuit

- •This could be done using the µProc's SPI lines
- •It could be carried out when the µProc is initialised
- •The MDAC_CLR command (one of the BOC_SPI signals) could be used to force a uProc initialisation

This is what it would look like:

Maurice Goodrick AtLinks LightABLE- uProc Connections TX-iFlame Adding Laser Current Control **BOC Motherboard** Assembly uProc Signals TX Plug-In врм BackPlane Wire Bonds Spacer PCB Interface Components LightABLE SPI Engine Enables **CPLD** LA_I2C BOC **uProc** Control **CPLD** BOC_SPI MDAÇ_SPI A10,D8 A6,D7 **Z PCB**

Production Status

- 328 LightABLEs delivered.
 - Delivery should be completed by end March.
- Two flavours of PCB produced and components mounted (except LightABLE).
- 123 LTx assembled.
 - 10 burn-in complete, now @ Cambridge for QA
 - 16 in oven for burn-in.
 - Rest either at RAL waiting for wire bonding or at Oxford waiting for burn-in.
- Production rate between 20 to 40/ week.

QA: Optical Power

LTx in SR1

- LTx optical power.
- No T correction
- Initial decrease
 ~1%.
 - No burn-in preformed for this array → probably ok but should run longer

AvgVolt by Day: No Correction

AvgVolt by Day: No Correction

Summary

- Improvements following design review have been implemented.
- Production well underway.
- Populate one crate in USA-15 in May
- Need to continue long-term optical power monitoring in SR1 and USA-15.

Backup Slides

OSA Thermal Studies

- New metalwork for front panel of BOC
 - Takes heat through thermal pad \rightarrow metalwork \rightarrow outside crate
- OSA measured for 12 channels from first LTx with micro on board.
- OSA spectra taken at MSR settings of 0, 10, 20 and 24 (maximum value which gave clean waveform).
- Very crude peak finding
 - Found λ_{max} corresponding to maximum power
 - Found λ_1 and λ_2 corresponding to peak power -3dB
 - Best estimate $\lambda_{\text{peak}} = (\lambda_1 + \lambda_2)/2$
 - Used difference between λ_{peak} and λ_{max} as estimate of error.
 - Error on MSR set to 1% (guess)
 - − Fit $λ_{peak}$ vs MSR → next slides

Fit Results variable in quality but reasonable consistency

Check Channel 8 MSR=20

- Spectra looks ok
- Programme found reasonable results
- 3 sigma effect → doesn't change conclusions

19

Summary

- Fits to each channel for slope
- Use Carlos's analysis for temperature sensitivity
 - $d\lambda/dT = 0.0673 \text{ nm/K}$
- Extrapolate to 50% duty cycle
- $\Delta T = 20 \pm 4 C$
- Improved thermal performance compared to previous study $\Delta T = 29$ to 43 C.
 - Improved metalwork takes heat through thermal pad to outside of crate.

channel	slope
C	0.0273
1	0.0235
2	0.0242
3	0.0296
4	0.0241
5	0.0251
6	0.0260
7	0.0251
8	0.0445
9	0.0271
10	0.0280
11	0.0259