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Summary of discovery potential for
Higgs and SUSY with < 10 fb-1
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By 2010-11 we should already have a
good picture of TeV-scale physics!



WHAT’S NEXT?



It hasn’t been easy to establish the SM ....

® < |973: theoretical foundations of the SM

renormalizability of SU(2)xU(1) with Higgs mechanism for EVWSB
asymptotic freedom, QCD as gauge theory of strong interactions
GIM mechanism and family structure

KM description of CP violation

® Followed by 30 years of consolidation:

e technical theoretical advances (higher-order calculations, lattice
QCD)

e experimental verification, via discovery of

® Fermions: charm, 3rd family (USA)
e Bosons:gluon,W and Z (Europe; .... waiting to add the Higgs ....)

e experimental consolidation, via measurement of

® EWV radiative corrections
® running of Xs
® CP violation in the 3rd generation



Since 1973:

® Theory mostly driven by theory, not by data. Need of

deeper understanding of the origin of EWSB
deeper understanding of the gauge structure of the SM
deeper understanding of the family structure of the SM

some understanding of quantum gravity (includes understanding of
the cosmological constant ~ 0)

® Milestones:

1974: Grand Unified Theories ®
1974: Supersymmetry ®

|977: See-saw mechanism for V masses @
1979: Technicolor ®

1984: Superstring theories &

| 998: Large scale extra dimensions ®



The LHC inverse problem

Reconstruct the Lagrangian of new physics from the LHC data
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Why will we need more integrated
luminosity after LHC’s first phase?

|. Improve measurements of new phenomena
seen at the LHC. E.g.

® Higgs couplings and self-couplings

® Properties of SUSY particles (mass, decay
BR’s, etc)

® Couplings of new Z’ or W’ gauge bosons (e.g.

L-R symmetry restoration?)

2. Detect/search low-rate phenomena inaccessible
at the LHC. E.g.:

* HoU'Y,H—Zy
e top quark FCNCs

3. Push sensitivity to new high-mass scales. E.g.
® New forces ( Z’,WR)

® Quark substructure

Energies/masses in the
few-100 GeV range.
Detector performance
at SLHC should equal
(or improve) in
absolute terms the
one at LHC

Very high masses, energies, rather
insensititive to high-lum
environment.

Not very demanding on detector
performance

Slightly degraded detector
performance tolerable



EW symmetry breaking



IF SM, then the Higgs boson will be seen with [L < 15 fb"!

* SM production and decay rates well known

* Detector performance for SM channels well understood
® | I5< my <200 from LEP and EWV fits in the SM

IF seen with SM production/decay rates, but outside SM mass range:

* new physics to explain EVV fits, or

* problems with LEP/SLD data

In either case,

* easy prey with low luminosity up to ~ 800 GeV, but more lum
is needed to understand why it does not fit in the SM mass range!

IF NOT SEEN UP TO my ~ 0.8-1 TeV GEV:

O < Osm: = hew physics

or
BR(H—visible) < BRsm: = new physics

or
Mu>800 GeV: expect WW/ZZ resonances at \s ~TeV = new physics

Sorting out these scenarios will take longer than the SM H
observation, and may well require SLHC luminosities, and/or LC
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Rare Higgs decay modes
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Detecting the presence of extra H
particles (as expected in SUSY)
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Sighatures of a composite

nature of the Higgs
See e.g. C. Grojean, at the CERN 2007 CLIC Workshop,

http://indico.cern.ch/conferenceOtherViews.py?!view=standard&confld=17870

What distinguishes a composite Higgs?
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Strong W scattering
Even with a light Higgs, growing amplitudes (at least up tom))
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Strong resonances in high-mass
WW or WZ scattering
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Vector resonance (p-like) in W Z, scattering from Chiral Lagrangian model
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Strong Higgs production
O(4) symmetry between W, Z, and the physical Higgs

strong boson scattering & strong Higgs production
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High momentum leptons, but lot of stat needed to reconstruct sparticle mass peaks from edge regions!
SLHC luminosity should be crucial, but also need for jets, b-tagging, missing E, i.e. adequate detector
performances (calorimetry, tracker) to really exploit the potential of increased statistics at SLHC.....

D. Deneari, SLHC talk, CARE-HHH Workshop, CERN, Nov. 8-11th, 2004



Searching new
forces: W’, 2’

E.g.aW’ coupling to R-handed
fermions, to reestablish at high
energy the R/L symmetry

Differentiating
among different
Z> models:
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http://arxiv.org/abs/hep-ph/0307020
http://arxiv.org/abs/hep-ph/0307020

gauge bosons.The SM predicts their value with accuracies at the level of
10-3, which is therefore the goal of the required experimental precision

q N4 W
W
_ RSN
q Y
LHC options
Coupling 14 TeV 14 TeV 28 TeV 28 TeV LC
100 b’ 1000 fb™! 100 b’ 1000 fb! 500 fb' 500 GeV
A, 0.0014 0.0006 0.0008 0.0002 0.0014
A 0.0028 0.0018 0.0023 0.009 0.0013
Ak, 0.034 0.020 0.027 0.013 0.0010
AK, 0.040 0.034 0.036 0.013 0.0016
g%, 0.0038 0.0024 0.0023 0.0007 0.0050
g
W,Z
q Nid q
W,Z
M\w_ W
g a8
(LO rates, CTEQ5M, k ~ 1.5 expected for these final states)
Process WWW WWZ LW 77 WWWW | WWWZ
N(m,; =120 GeV)| 2600 1100 36 7 5 0.8
N(m, = 200GeV) 7100 2000 130 33 20 1.6

Ex: Precise determinations of the self-couplings of EW gauge bosons

5 parameters describing weak and EM dipole and quadrupole moments of

20



14TeV, 100 fb-!  28TeV, 100 b
14 TeV, 1000 fb-! 28 TeV, 1000 fb!
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Benchmarks for detector performance at SLHC

The performance at 1034 should be taken as a minimal reference goal

Object Physics benchmark Performance benchmark
b jets & Higgs identification, BR Tagging efficiency vs purity
tau measurements (statistics and bg

suppression)

Higgs mass determination, Mass resolution in the ~

b jets bg suppression | -few x 100 GeV region
fwd jets Vector boson fusion: - jet tagging efficiency/fake
- measure H couplings rate vs jet Er
- if no H, search strong - jet Et resolution
WW phenomena
Jet vetoes for vector 2l e

cen jets | boson fusion
Mass spectroscopy

WIZ D, SUSY decays, etc ID efficiency vs fake rate
electrons |,/ properties Y

mass resolution

Forward acceptance, fake

WI/Z 1D, SUSY and H
rate

decays,
W'IZ’ properties, etc.

muons

Detector issue

Tracking
Pileup

Pileup

Final focus magnets:
- acceptance

- bg

- resolution

Pileup

Pileup

Pileup
Pileup
albedo

forward efficiency
final focus geometry 2,



Luminosity vs energy
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Comments

® Whether Energy or Luminosity is a better upgrade path

depends on where and what the new physics is (unless
Lum is allowed to increase with E as Lum o< ).

® Eg a2TeV Z is requires more statistics, rather than more E

14 & 28 TeV is great, 14 = 42 is even better, but 28 — 42

is probably not worth the cost, thus 14 =& 28 — 42 unlikely.
Implications for magnet R&D programme!?
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Discovering new physics will be the beginning, not the end!
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The discovery of Supersymmetry or other new phenomena at the LHC will
dramatically increase the motivation for searches of new phenomena in

flavour physics.

While there is no guarantee that any deviation from the SM will be found, the
existence of physics BSM will demand and fully justify these studies: we’ll be
measuring the properties, however trivial, of something which we know
exists, as opposed to blindly looking for “we don’t know what” as we are
unfortunately doing today!

B physics studies at the LHC and at future SuperB factories, a rich K physics
programme and possibly new studies of the charm sector, will naturally
complement the measurements in V physics and searches for Lepton Flavour
Violation phenomena.

An role should be foreseen in the upgrade for a continued B-
physics programme with LHCb
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Conclusions

Except for the Higgs, we cannot anticipate what will be discovered

Any hint of new physics will require many years of work, and very
diverse experimental inputs, to pin down the next “standard model”

x 10 Lum will
® typically increase mass range for limits/discovery by 30%

® improvement in measurements etc strongly dependend on final state
and detector performance

The TeV scale plays a crucial role for PP.
® my is expected to be below | TeV, and within LHC’s reach

® but the dynamics of EWSB could manifest itself only at larger scales, O(few
TeV)

m) demands for a x10 increase in the luminosity (and likely
2xenergy!) will likely be fully justified few years from now

Try to preserve a diverse programme, with a role for flavour physics as well
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