SLHC Accelerator and Injector Upgrades

Lyn Evans

Peak Luminosity

$$L = \frac{N_b^2 n_b f_r \gamma}{4\pi\varepsilon_n \beta^*} F$$

N_b number of particles per bunch

n_b number of bunches

f_r revolution frequency

ε_n normalised emittance

 β^* beta value at lp

F reduction factor due to crossing angle

 N_b , ε_n injector chain

 β^* LHC insertion

F beam separation schemes

n_b electron cloud effect

LHC Upgrade-Phase I

Goal of "Phase I" upgrade:

Enable focusing of the beams to β *=0.25 m in IP1 and IP5, and reliable operation of the LHC at double the operating luminosity on the horizon of the physics run in 2013.

Scope of "Phase I" upgrade:

- 1. Upgrade of ATLAS and CMS experimental insertions. The interfaces between the LHC and the experiments remain unchanged at \pm 19 m.
- 2. Replace the present triplets with wide aperture quadrupoles based on the LHC dipole cables (Nb-Ti) cooled at 1.9 K.
- 3. Upgrade the D1 separation dipole, TAS and collimation system so as to be compatible with the inner triplet aperture.
- 4. The cooling capacity of the cryogenic system and other main infrastructure elements remain unchanged.
- 5. Modifications of other insertion magnets (e.g. D2-Q4) and introduction of other equipment in the insertions to the extent of available resources.

Participants and Milestones

Several departments are involved in the "Phase I" project:

AT Department: low-beta quadrupoles and correctors, D1 separation dipoles, magnet testing, magnet protection and cold powering, vacuum equipment, QRL modifications.

AB Department: optics and performance, power converters, instrumentation, TAS and other beam-line absorbers, ...

TS Department: cryostat support and alignment equipment, interfaces with the experiments, installation, design effort, ...

SLHC-PP collaborators.

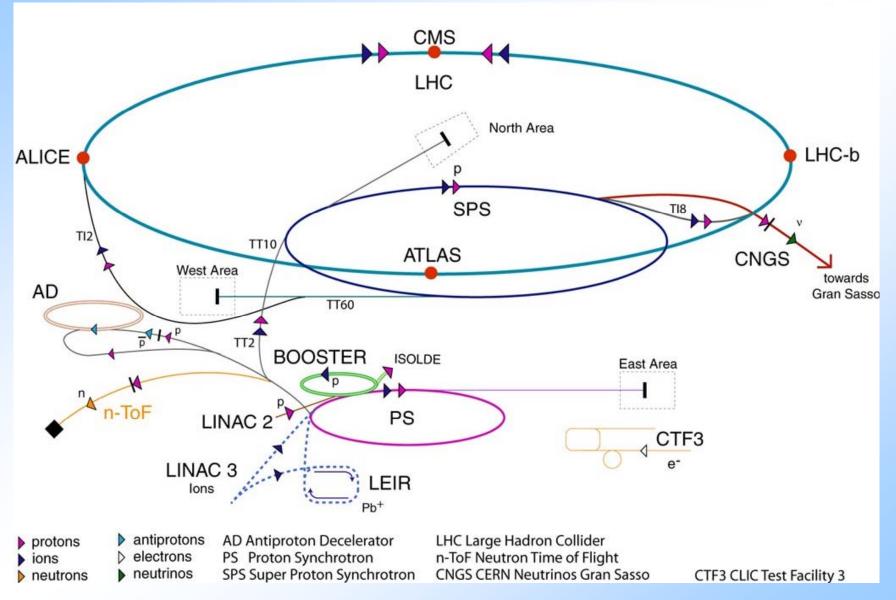
Milestones:

Conceptual Design Report mid 2008

Technical Design Report mid 2009

Model quadrupole end 2009

Pre-series quadrupole 2010


String test 2012

Installation shutdown 2013

CERN accelerator complex

Present limitations

1. Lack of reliability:

Ageing accelerators (PS is 48 years old!) operating far beyond initial parameters

need for new accelerators designed for the needs of SLHC

2. Main performance limitation:

Excessive incoherent space charge tune spreads DQSC at injection in the PSB (50 MeV) and PS (1.4 GeV) because of the high required beam brightness N/e*.

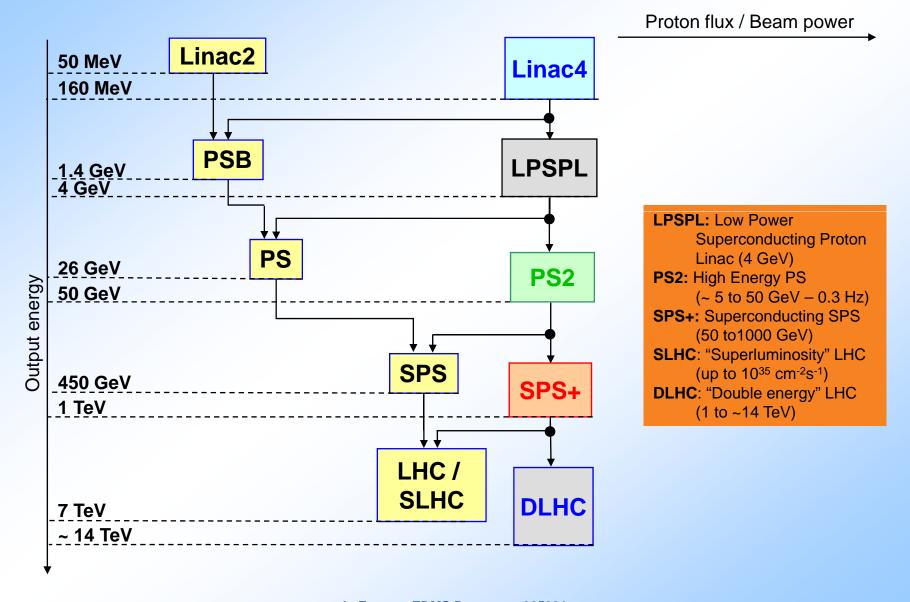
$$\Delta Q_{SC} \propto \frac{N_b}{\varepsilon_{XY}} \cdot \frac{R}{\beta \gamma^2}$$

with N_b : number of protons/bunch

 $\mathcal{E}_{X,Y}$: normalized transverse emittances

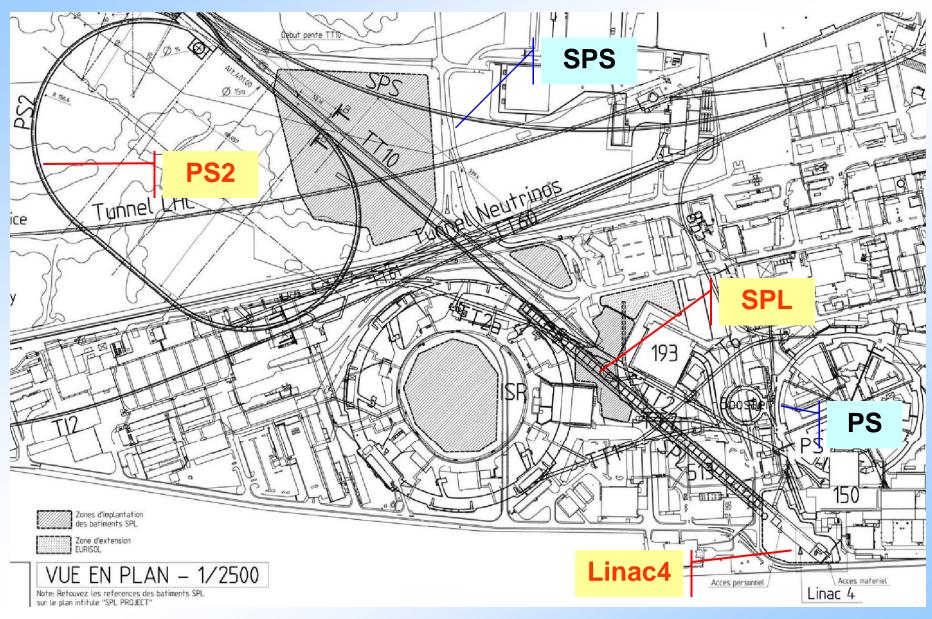
R: mean radius of the accelerator

 $\beta \gamma$: classical relativistic parameters


need to increase the injection energy in the synchrotrons

- Increase injection energy in the PSB from 50 to 160 MeV kinetic
- Increase injection energy in the SPS from 25 to 50 GeV kinetic
- Design the PS successor (PS2) with an acceptable space charge effect for the maximum beam envisaged for SLHC: => injection energy of 4 GeV

Upgrade components



Layout of the new injectors

Stage 1: Linac4

Direct benefits of the new linac

Stop of Linac2:

- End of recurrent problems with Linac2 (vacuum leaks, etc.)
- End of use of obsolete RF triodes (hard to get + expensive)

Higher performance:

- Space charge decreased by a factor of 2 in the PSB
 - => potential to double the beam brightness and fill the PS with the LHC beam in a single pulse,
 - => easier handling of high intensity. Potential to double the intensity per pulse.
- Low loss injection process (Charge exchange instead of betatron stacking)
- High flexibility for painting in the transverse and longitudinal planes (high speed chopper at 3 MeV in Linac4)

First step towards the SPL:

Linac4 will provide beam for commissioning LPSPL + PS2 without disturbing physics.

Benefits for users of the PSB

Good match between space charge limits at injection in the PSB and PS

=> for LHC, no more long flat bottom at PS injection + shorter flat bottom at SPS injection: easier/ more reliable operation / potential for ultimate beam from the PS

More intensity per pulse available for PSB beam users (ISOLDE) – up to 2'

More PSB cycles available for other uses than LHC

Stage 2: LPSPL + PS2

Direct benefits of the LPSPL + PS2

Stop of PSB and PS:

- End of recurrent problems (damaged magnets in the PS, etc.)
- End of maintenance of equipment with multiple layers of modifications
- End of operation of old accelerators at their maximum capability
- Safer operation at higher proton flux (adequate shielding and collimation)

Higher performance:

- Capability to deliver 2.2' the ultimate beam for LHC to the SPS
 - => potential to prepare the SPS for supplying the beam required for the SLHC,
- Higher injection energy in the SPS + higher intensity and brightness
 - => easier handling of high intensity. Potential to increase the intensity per pulse.

First step towards the SPL:

Linac4 will provide beam for commissioning LPSPL + PS2 without disturbing physics.

Benefits for users of the LPSPL and PS2

More than 50 % of the LPSPL pulses will be available (not needed by PS2)

=> New nuclear physics experiments – extension of ISOLDE (if no EURISOL)...

Upgraded characteristics of the PS2 beam wrt the PS (energy and flux)

Potential for a higher proton flux from the SPS

Stage 2': SPL

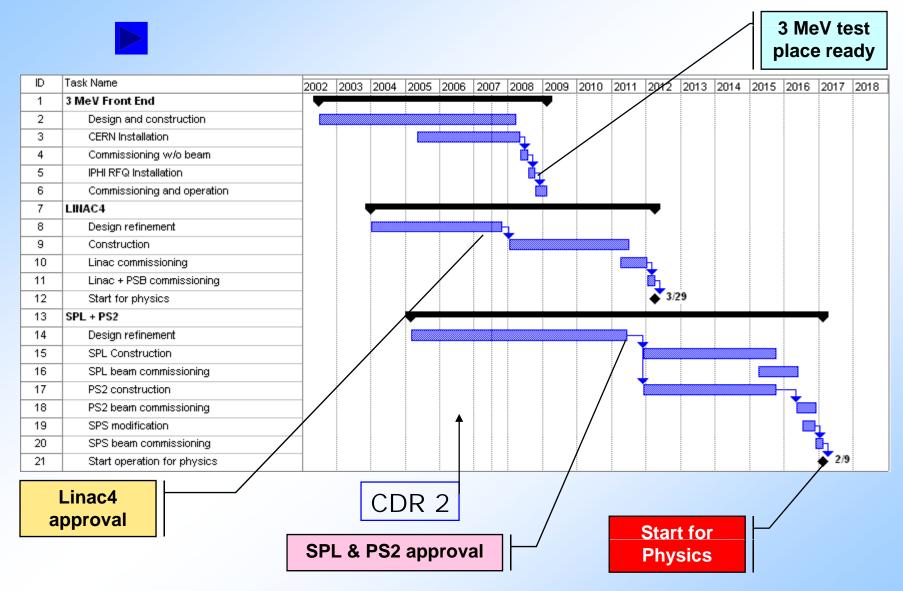
Upgrade the LPSPL into an SPL (multi- MW beam power at 2-5 GeV):

- 50 Hz rate with upgraded infrastructure (electricity, water, cryoplants, ...)
- 40 mA beam current by doubling the number of klystrons in the superconducting part)

Possible users

EURISOL (2nd generation ISOL-type RIB facility)

- => special deflection system(s) out of the SPL into a transfer line
- => new experimental facility with capability to receive 5 MW beam power
- => potential of supplying b-unstable isotopes to a b-beam facility...


Neutrino factory

- => energy upgrade to 5 GeV (+70 m of sc accelerating structures)
- => 2 fixed energy rings for protons (accumulator & compressor)
- => accelerator complex with target, m capture-cooling-acceleration (20-50 GeV) and storage

Planning ...

