
Lemon Tutorial

Sensor How-To
Miroslav Siket, Dennis Waldron

http://cern.ch/lemon
CERN-IT/FIO-FD

09/10/2006 Lemon Tutorial 2

Outline

• Terminology
• Examples of existing sensors
• Considerations
• Live Examples

– Hello World
– Service based monitoring

• Do’s and Don’ts

09/10/2006 Lemon Tutorial 3

Terminology

• Sensor:
– A process or script which is connected to the lemon-agent via a

bi-directional pipe and collects information on behalf of the
agent. Sensors implement,

• Metric Classes:
– The equivalent to a class in OOP (Object Orientated

Programming)
• Metric Instance:

– Is an instance (an object) of a metric class which has its own
configuration data.

• Metric ID:
– A unique identifier associated with a particular metric instance

of a particular metric class.

09/10/2006 Lemon Tutorial 4

Existing sensors

• At CERN:
– Approx 40 active sensors defined, providing 264 metrics and 227

exceptions.
– Default installation of the Lemon agent comes with three sensors:

• MSA (builtin) – self monitoring of the agent.
• Linux – performance, file system and process monitoring.
• File – file tests e.g. size, mtime, ctime.

– Together they provide 135 metrics (51% of all CERN metrics)
– Other officially distributed sensors include:

• exception – correlation sensor for generating alarms.
• remote – provides ping and http web server checks.
• oracle – oracle database statistics monitoring.
• parselog – log file parsing sensor.

– All available from the lemon software repository
http://linuxsoft.cern.ch/lemon/

– Other contributing sensors are available from CVS:
CVSROOT=:pserver:anonymous@isscvs.cern.ch:/local/reps/elfms/sensors

09/10/2006 Lemon Tutorial 5

Considerations

• Question: What is your goal? How do you intend to use
the monitoring information you collect?

• Is it for:
– Pure data collection?

• OK
– Graphs displayed on the lemon status pages?

• Just because you’ve collected data doesn’t give you graphs
immediately! This is not automatic!

– Information to be alarmed?
• Make sure the structure of the data you collect can be alarmed!
• Data that cannot be alarmed:

– Timestamps as strings - NO
– Timestamps as numbers - NO
– Parsing of complex strings - NO

09/10/2006 Lemon Tutorial 6

Considerations (II) - Use Case

• Grid Certificate Expiry Use Case

Outline: you wish to be notified or raise an alarm if the Grid Certificate on a
machine will expiry in the next two weeks.

• You need 1 metric and 1 exception
– The metric will record the expiry time of the certificate.
– The exception will check the metric and decide if it expires in the next two weeks.

• The metric needs to be structured in such a way that the correlation unit of the
exception sensor can understand it.

• Can I record the data as a:
– String e.g. “Sun Oct 8 16:05:47 2006” NO (Cannot be converted to a number)

– UnixTime e.g. “1160316347” NO (Correlation unit doesn’t understand time, yet!!)

• Solution:
– Record the number of seconds until the certificate expires.
– E.g 1814400 seconds (3 wks) can be mathematical alarmed :-

If metric < 1209600 (2 wks) then raise alarm

09/10/2006 Lemon Tutorial 7

Considerations (III)

• Misconception:
– In Lemon that a metric has to be related to one and

only one distinct piece of information (1 to 1 mapping)
• Not true:

– A metric can be associated with multiple values and
have multi rows with each row identified by a unique
key.

09/10/2006 Lemon Tutorial 8

Considerations (IV) – Use Case

• Recording partition information
Outline: you would like to know the total size, space used in megabytes, space used as a % and

the mount options of all mounted partitions on a machine.
– Under the idea of a 1 to 1 mapping, that’s 4 metrics per partition. An average machine may

have 7 partitions (4x7 = 28 metrics in total).
– Why not:

• Convert the data into a multi-valued metric?
• 7 metrics each reporting 4 values. So,

– Metric 1 total_space
– Metric 2 space_used_mb
– Metric 3 space_used_perc
– Metric 4 mount_options
Becomes:
– Metric A total_space space_used_mb space_used_perc mount_options

– Go one step further:
• Convert the data into a multi-valued, multi-rowed metric
• 1 metric reporting the values for all mount points. So,

– Metric A total_space space_used_mb space_used_perc mount_options
Becomes:
– Metric B mountname1 total_space space_used_mb space_used_perc mount_options
- Metric B mountname2 total_space space_used_mb space_used_perc mount_options
- ….

- Benefits:
- Monitoring of new mount points is dynamic, no need for reconfigurations, no need to going through a

registration process to get new metric ids.

09/10/2006 Lemon Tutorial 9

Example 1 – Hello World

Objective: To create a Perl sensor which records the value “Hello World” into
Lemon.

• Simple sensor to demonstrate:
– The generic build framework for sensors.
– How to registering your Perl module with the API.
– How to register metric classes that your modules provides.
– How to store the text “Hello World” for the machine under which the sensor runs into

Lemon.
– Running and debugging your sensor on the command line.

• Functions used:
– registerVersion()
– registerMetric()
– storeSample01()

• Documented at:
http://lemon.web.cern.ch/lemon/doc/howto/sensor_tutorial.shtml

09/10/2006 Lemon Tutorial 10

Example 2 – Service Monitoring

Objective: To check if a webpage is available on a remote
web server and record the HTTP response code under a

service name.
• Demonstrates:

– The basics of on behalf reporting
– The ability to parse configuration arguments
– The ability to log messages

• Functions used:
– registerMetric()
– getParam()
– log()
– storeSample03()

09/10/2006 Lemon Tutorial 11

Do’s and Don’ts

• Don’t:
– Call die() or exit() from inside your sensor.
– Open or write to files in locations writeable by non-root users such as /tmp/
– Read from filehandles (e.g sockets) that may block. This will make your

sensor unresponsive to requests from the agent.
– Never rely on, or have dependencies on files on remote file systems such as

AFS (Andrew File System). Your sensor should aim to have as few
dependencies as possible

• Do’s:
– Document your sensor. Refer to the sensor tutorial to see how this can be

done automatically for you.
– If you have the ability to use a timeout around calls to databases and

services like LSF, use it!!
– Make your metric classes configurable, avoid hard coded paths to non

standard files.
– Try to make your sensors as generic as possible so that others can benefit

from your work.

