
Lemon Tutorial

Sensor Exception
Miroslav Siket, Dennis Waldron

http://cern.ch/lemon
CERN-IT/FIO-FD

09/10/2006 Lemon Tutorial 2

Outline

• What is it?
• Configuration
• Correlation Examples.
• Actuators
• Dealing with transient alarms.

09/10/2006 Lemon Tutorial 3

What is it?

• Sensor-exception
– An officially supported Lemon sensor coded in C++.
– Developed in collaboration between CERN and BARC.
– Implements the Lemon alarm protocol.
– Has a LEX & YACC correlation engine which allows it to evaluate 1 or more

metrics to determine if a problem exists on a machine.
– Supports reporting alarms on behalf of other monitored entities.
– Allows corrective actions (actuators) up to n-times or within a given time

window.
– Is the primary interface to inserting alarms into the Lemon framework. The

output of the sensor is used by LAS and lemon-host-check.
– Provides one and only one metric class “alarm.exception”

• Full documentation at:
– http://lemon.web.cern.ch/lemon/doc/sensors/exception.shtml

09/10/2006 Lemon Tutorial 4

Configuration

• The sensor has 6 configuration options:
– Correlation

• The power behind the sensor exceptions capabilities
• This tells the sensor which metrics are involved in the alarm and how they should be

evaluated
– Actuator

• The path to an actuator to run if the correlation string is true.
– MaxRuns

• The maximum number of times an actuator can run consecutively before a final alarm is
generating

– Timeout
• The maximum number of seconds that an actuator is allowed to run before being

terminated by the sensor.
– MinOccurs

• The minimum number of consecutive times a problem must be present before raising an
alarm.

• Good for dealing with transient alarms.
– Silent

• Defines whether the exception should run in silent mode. A silent exception will continue
to be evaluated but the result will not be displayed on LAS or lemon-host-check.

• Good for testing and deployment of new alarms.

09/10/2006 Lemon Tutorial 5

Configuration (II)

• Basic format of a correlation is:
[entity_name]:<metric_id>:<field_position> <operator> <reference_value> ...

• Where,
– entity_name

• An optional parameter, used for reporting on behalf of other entities
• The name of the entity (wildcards ‘*’ are supported)

– metric_id
• The id of the metric to check

– field_position
• The field to use within the metric.
• Allows the correlation to extract a single value from a multi-valued metric

– Operater
• E.g. ==, !=, >, <, eq, ne, regex, !regex …

– reference_value
• A string or number used to compare the metric_id:field_position against

09/10/2006 Lemon Tutorial 6

Correlation Example (I)

• Objective:
– To run a actuator when the occupancy of the /tmp

partition is greater then 80%.
• Involved Metrics

– 9104 (system.partitionInfo)
– Field 1 = mountname, field 5 = percentage occupancy

• Correlation
Correlation ((9104:1 eq '/tmp') && (9104:5 > 80))
Actuator /usr/local/sbin/clean-tmp-partition -o 75
MaxRuns 3 900
Timeout 300

09/10/2006 Lemon Tutorial 7

Correlation Example (II)

• Objective:
– To raise an alarm “lemon_agent_wrong” if the memory utilisation,

cpu utilisation or number of errors in the agents log file is not
within acceptable limits.

• Correlation
10004:1 > 600 && (10004:7 > 10 || (10004:8 > 150000 && 4109:3 eq 'i386') ||

(10004:8 > 600000 && 4109:3 regex '64') || 10007:2 > 50 || 10007:3 > 10 || 10007:4 > 0)

If the:
(uptime of the agent (10004:1) is greater then 600 seconds) AND
(the cpu utilisation of the sensors (10004:7) over the last sampling frequency is greater then 10%) OR
(the memory consumed by the sensors (10004:8) is greater then 150 megabytes for machines of architecture type

(4109:3) i386 or 600 megabytes for machines of architecture type x86_64) OR
(the number of warning messages (10007:2) recorded over the last sampling frequency is greater the 50) OR
(the number of error messages (10007:3) recorded over the last sampling frequency is greater the 10) OR
(the number of fatal messages (10007:3) recorded over the last sampling frequency is greater the 0) raise an alarm

09/10/2006 Lemon Tutorial 8

Actuators

• Information:
– Run as forked processes.
– Are connected to the sensor via a pipe.
– All information written to stdout or stderr by the actuator is

caught and recorded in the agents log file.
– All actuator attempts are logged centrally and recorded locally

in the agents log file.
• Running shell style actuators:

– The system call used to run actuator doesn’t provide shell style
conveniences.

– To use shell style syntax like *, &&, | etc you must define you
actuator like this:

Actuator /bin/sh –c \\” /bin/echo ‘This is a demo message from $HOSTNAME’ \\”

09/10/2006 Lemon Tutorial 9

Dealing with transient Alarms

• Why do we get transient alarms?
– By default monitoring isn’t very tolerant of outside

interventions
– Maybe network issues.
– A resource maybe temporarily unavailable.

• What can be done?
– Use the configuration option MinOccurs
– MinOccurs gives an exception a level of tolerance, a

delay factor between detecting a problem and raising
an alarm

