

Pileup suppression in ATLAS: jet-vertex tagging & track-based grooming

Pascal Nef

"Mitigation of pileup effects at the LHC" workshop at CERN May 16th, 2014

Introduction

- Pileup is one of the main challenges at the LHC
	- Especially for jets: jet resolution, pileup jets, jet shapes and jet mass, …
	- Major area of research for experimentalist and theorists!
- Talk is organized in two themes: **pileup jet suppression** & **track-based grooming**
	- more details in recently approved CONF note: [ATLAS-CONF-2014-018](http://cds.cern.ch/record/1700870/)

Pileup jet suppression

The need for pileup jet suppression

- Pileup effect on jets are mitigated by applying the jet-area pileup correction
	- Local fluctuations in the event-by-event pileup activity can give rise to pileup jets

- Mean number of jets per event after jetarea based correction
	- increases with μ
	- ATLAS simulation over-predicts
- After suppressing pileup jets using tracking information:
	- **<Nj> is flat**
	- good agreement between data and MC

Pileup jet suppression with JVF ²⁵ and following bunch crossings relative to the triggered event to which the calorimeter is susceptible. For ²⁶ this note, in-time and out-of-time pileup will be referred to collectively as pileup.

from JVF to corrJVF a pileup-corrected JVF variable, and *R*pT, which combines both calorimeter and tracking information.

• Correcting JVF (in average) for its pileup dependence: sum pileup tracks as a just
Political with a just a j \overline{a} , it is defined as \overline{b}

6

The charged fraction R_{pT} The variable *R*pT is defined as the scalar *p*^T sum of the tracks that are associated with the jet and originate

• R_{pT} is the charged p_T of a jet and defined as: $\overline{R_{\text{at}}}$ is the charged p_{at} of a jet and defined as:

> $R_{\text{pT}} =$ $\sum_k p_{\text{T}}^{\text{trk}_k}(\text{PV}_0)$ *pjet* T Trailer liachs only hard-scatter tracks only fully calibrated (pileup corrected) calorimeter p_T

- constructed from pileup corrected / insensitive variables
- **excellent discrimination between hard-scatter and pileup jets**

the JVT likelihood

- constructing the jet-vertex tagger (JVT) as a 2D likelihood from corrJVF and R_{pT}
	- using a nearest neighbor algorithm to avoid statistical fluctuations

 N_{Vtx}

5 10 15 20 25

 $\overline{\mathrm{O}}_{\!\!\mathrm{I}}$

Efficiency vs. fake-rate curves

- efficiency vs. fake-rate curves (ROC) for JVF and JVT
	- large improvement in pileup jet rejection at fixed efficiency

• performance is worse for light (uds)-quark initiated jets than for b-quark and gluon jets

• light quark jets have higher response and radiate less

Data to MC comparison in Z(μμ)+jets

- Validate modeling of JVT (and corrJVF and R_{pT}) using $Z(\mu\mu)$ +jets and semileptonic ttbar events • separately in hard-scatter and pileup dominated regions
- Hard-scatter jet dominated region Pileup jet dominated region ATLAS-CONF-2014-018 **ATLAS-CONF-2014-018** 10 Events Events 10 *ATLAS* Preliminary *ATLAS* Preliminary excell \sqrt{s} = 8 TeV, L = 20.3 fb¹ \sqrt{s} = 8 TeV, L = 20.3 fb⁻¹ $Z\!\!\!\!Z\!\!\!\!Z$ MC in \mathbb{Z}/\mathbb{Z} MC incl. agreen \rightarrow HS \rightarrow HS _Sherpa Z→μμ _Sherpa Z→μμ 10^6 1 $0⁵$ $-$ PU Anti-k, LCW+JES R=0.4 Anti-k, LCW+JES R=0.4 — PU 20<p-<50 GeV, hl<2.4 -• Data 20<p-<50 GeV, hl<2.4 → Data $Z p_r > 30$ GeV $Z p_r > 30$ GeV 10^{5} HS enriched selection PU selection 10^{4} Z pileup is103
pileup is103 $10⁴$ pileup lated! $10³$ $10²$ 0 0.5 1 -1 -0.5 0 0.5 1 JVT corrJVF 2 2 Data / MC Data / MC Data / MC Data / MC 1.5 1.5 1 1 0.5 Ω . 0^{E} 0 0.5 1 $0 -1 -0.5 -0.5 -0.5$
- Ultimately care about modeling of corrJVF, R_{pT} and JVT for hard-scatter, which is good.
- Rate of pileup jets are too high in simulation, corrJVF, R_{pT} and JVT shapes are reasonably well modeled

JVT efficiency measurement

- JVT efficiency measurement from tag & probe in Z+jets events:
- JVT efficiency measured in the signal region with $|\Delta\varphi(Z, jet)| > 2.8$
- **pileup background** in the signal region **estimated from data** using a pileup control region |Δφ(Z, jet)| < 1.2
- dominant systematics:
	- difference in efficiency between Sherpa & Powheg+Pythia (different fragmentation model)

- three different operating points
- vs p_t and vs. η
- scale factors are consistent with unity
	- 1% to 2% uncertainty

Physics application: VBF Higgs

- Application of JVT to a VBF H->4I analysis:
- Typical event selection
	- require two $p_T > 30$ GeV jets to be separated in η by more than 3 units
- Define the jet-veto efficiency as:
	- fraction of events with no additional (third) jet within the tracker coverage

- Veto efficiency for $p_T > 20$ GeV jets spoilt by pileup jets
- **Flat efficiency** is recovered if **JVT** is used to suppress pileup jets

Pileup jet rates: where do we stand?

• Pileup jet rates as a function of jet p_T threshold and η in ATLAS simulation

- This is for an average number of truth interactions of 23 (ranging between 0 and 50)
- Pileup jet rates in the forward region are strongly suppressed w.r.t. the central region:
	- Mainly due to granularity and noise thresholds of the ATLAS calorimeter
- Using JVT the pileup jet rate is suppressed by factor \sim 100 in the central region
	- Forward region now become important
	- As of today: No calorimeter (jet shape) based pileup jet suppression in the forward region in ATLAS

Track-based grooming

Track-based grooming

• Event display of a W' at m=1 TeV, decaying via WZ -> qqqq **A** Fyent display of a W' at m-1 TeV decaying via WZ -> grand

- reconstruct anti- k_t R=1.0 jets and their k_t R=0.3 subjets
- ghost associate hard-scatter and pileup tracks to the subjets: calculate corrJVF and related variables

Track-based grooming *April 10, 2014 – 09 : 19* DRAFT 20

- Event display of a W' at m=1 TeV, decaying via WZ -> qqqq
	- reconstruct anti- k_t R=1.0 jets and their k_t R=0.3 subjets

RAT

LABORA

• ghost associate hard-scatter and pileup tracks to the subjets: calculate corrJVF and related variables

corrJVF-based grooming subjets with small *p*^T ratio and large corrJVF that would be removed by calorimeter-based trimming, should be kept by the track-based trimming algorithm.

truth-level study for corrJVF grooming

- **truth-level study** at high pileup: this is ***not*** ATLAS material
	- Z' -> ttbar (all hadronic), $M_{Z'} = 1$ TeV
	- looking at leading anti-k_t R=1.0 jets, with pileup corrected $p_T > 300$ GeV

- in trimming, f_{cut} is defined as $p_T^{subject}$ (pileup corrected) / $p_T^{ungroomed}$
- $f_{\text{cut}} = 5\%$ is too tight for high N_{Vtx}
	- losing subjets from the hard-scatter

truth-level study for corrJVF grooming

• Only small fraction of subjets have corrJVF < 0.6

• it seems it's not very likely to get a pileup subjet within the anti- k_t R = 1.0 jet ...

- \bullet cutting on corrJVF allows to lower the f_{cut}
	- improvement in mass resolution is marginal at $N_{Vtx} = 100$

Summary

