

Mitigation of pileup effects at the LHC

May 16-18, 2014

Pile-up Suppression in Missing Transverse Momentum Reconstruction in ATLAS

Peter Loch University of Arizona Tucson, Arizona USA

(All results from ATLAS-CONF-2014-019)

Contributions

Hard objects – $E_{T}^{miss,HardTerm}$

Identified and fully calibrated particles like leptons and photons

Fully calibrated Anti- $k_T R = 0.4$ jets – including pile-up corrections

Soft signals – $E_{T}^{miss,SoftTerm}$

TopoCluster and tracks not used in hard object reconstruction

Composition

Reconstruction sequence

Reflects reconstruction quality – default: (1) electrons, (2) photons, (3) taus, (4) jets, (5) muons, (6) soft signals

Object filters

Kinematics (p_T thesholds and η selections)

Reconstruction quality

Event signal ambiguity resolution

Based on accepted objects from reconstruction sequence

Vetoes use of lower priority distribution if signal is shared with accepted object – object based, no geometrical assumptions

MET in ATLAS (reconstructed in $|\eta| < 4.9$)

Missing transverse momentum components

 $\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}} = \left(E_x^{\mathrm{miss}}, E_u^{\mathrm{miss}} \right), \text{ Missing transverse momentum vector}$

$$E_{\mathrm{T}}^{\mathrm{miss}} = \left| \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}} \right| = \sqrt{(E_x^{\mathrm{miss}})^2 + (E_y^{\mathrm{miss}})^2},$$

Missing transverse momentum (MET)

hard objects soft signals

$$\Sigma E_{\rm T} = \Sigma E_{\rm T}^{\rm HardTerm} + \Sigma E_{\rm T}^{\rm SoftTerm} = \sum_{\rm hard \ objects} p_{\rm T} + \sum_{\rm soft \ signals} p_{\rm T} \,.$$

Scalar transverse momentum sum (SumET)

P. Loch U of Arizona May 18, 2014

Calorimeter region dependence

Different signal shapes in the LAr calorimeters

Different out-of-time/in-time pile-up cancellations due to sensitivity to bunch spacing (50 ns in 2012 not ideal, 25 ns better)

Different acceptances

Dead materials, signal formation, cluster corrections, ...

 $Z \rightarrow \mu\mu$, no jets with $p_T > 20$ GeV \Rightarrow only muon and soft term contributions to MET

MET pile-up corrections

Hard term contributions are expected to be corrected for pile-up

Only jet contribution to MET is filtered by JVF cut (JVF > 0 for jets $|\eta| < 2.4 -$ at least weak association with hard-scatter vertex for central jets)

SoftTerm is not corrected a priori

- Observables with large dependence on final state reconstruction selections – inhomogeneous signal with contributions from e.g. jetty structures below threshold, single soft particles, residual pile-up fluctuations...
- No universal calibration reference ("truth") available a priori needs pile-up corrections

Challenges for SoftTerm pile-up corrections

- Transverse momentum flow pattern from UE belonging to hard scatter very similar to pile-up induced signal structures
- Pile-up can "hide" even relatively significant local hadronic activity like the hadronic recoil in Z or W production

MET Pile-up Corrections (2)

2014

16-18,

Мау

6

Track-based corrections

Soft Term Vertex Fraction

Use ratio of summed p_T from SoftTerm tracks coming from the hard scatter vertex V_{HS} to the p_T sum of all tracks contributing to the SoftTerm (one factor per event) Applied to SoftTerm signals everywhere – underlying idea is that central PU activity has some correlation with forward activity Sensitive to (hard scatter and pile-up) vertex reconstruction efficiency

$$\text{STVF} = \frac{\sum_{i=1}^{N_{\text{trk}}(V_{\text{HS}})} p_{\text{T},i}^{\text{trk}}(V_{\text{HS}})}{\sum_{k=1}^{N_{\text{PV}}} \sum_{i=1}^{N_{\text{trk}}(V_k)} p_{\text{T},i}^{\text{trk}}(V_k)}$$

E^{miss,SoftTerm} x(y),corr

 $E_{\mathrm{T,corr}}^{\mathrm{miss,SoftTerm}}$

 $\Sigma E_{T}^{\text{SoftTerm}}$

- $\text{STVF} \cdot E_{r(u)}^{\text{miss,SoftTerm}}$
- $\text{STVF} \cdot E_{\text{T}}^{\text{miss,SoftTerm}}$
- $STVF \cdot \Sigma E_T^{SoftTerm}$

0.8 (STVF weight)

P. Loch U of Arizona May 18, 2014

Jet-area-based suppression

Strategy

Use correction similar to (hard) jet ($p_{\rm T} > 20$ GeV)

Requires signals with catchment area – cluster SoftTerm signals into jets with $p_T \ge 0$ (*filter-jets*)

Calculate ρ from SoftTerm signals only and filter jets

$$p_{\mathrm{T},i}^{\mathrm{jet}} = \begin{cases} 0 & p_{\mathrm{T},i}^{\mathrm{filter-jet}} < \rho_{\mathrm{evt}}^{\mathrm{med}}(\eta_i^{\mathrm{filter-jet}}) \cdot A_i^{\mathrm{filter-jet}} \\ p_{\mathrm{T},i}^{\mathrm{filter-jet}} - \rho_{\mathrm{evt}}^{\mathrm{med}}(\eta_i^{\mathrm{filter-jet}}) \cdot A_i^{\mathrm{filter-jet}} & p_{\mathrm{T},i}^{\mathrm{filter-jet}} \ge \rho_{\mathrm{evt}}^{\mathrm{med}}(\eta_i^{\mathrm{filter-jet}}) \cdot A_i^{\mathrm{filter-jet}} \\ \end{cases}$$

Like soft event trimming with sub-jet $p_{\rm T}$ -threshold defined by ρ ρ calculation (FastJet 2.4.x)

Cluster SoftTerm into jets with $p_T \ge o(\rho \text{-jets}) - can be the same as filter-jets (see configurations later)$

Calculate median transverse momentum density from ρ -jets

Challenges

Need to provide $\rho(\eta)$ for $|\eta| < 4.9$ – forward calorimeter response to soft activity

The University ρ -measurement with ATLAS Calorimeters

- Region sparsely populated with TopoClusters = 4-vectors Biases ρ reconstruction towards
- smaller values even o (median!)

Drop severely steeper than expected from physics!

P. Loch U of Arizona May 18, 2014

Effect from calorimeter granularity

TopoCluster density drops sharply when granularity decreases in forward direction Region sparsely populated with TopoClusters = 4-vectors Biases *p* reconstruction towards smaller values – even o (median!) Drop severely steeper than

expected from physics!

Pythia 8 MB (Tune 4C) All stable particles (no $p_{\rm T}$ cut) $\langle \mu \rangle = 30, \sqrt{s} = 8$ TeV

P. Loch U of Arizona May 18, 2014

Mitigation of pileup effects at the LHC

May 16-18, 2014

Forward region ρ determination

Determine ρ with ρ -jets in central region $|\eta| < 2...$

Flat $p_{\rm T}$ density

... and extrapolate to forward region $|\eta| > 2$

Average relative extrapolation shapes determined with average $p_{\rm T}$ collected in sliding η -windows

 $\left[\eta - \Delta \eta / 2, \eta + \Delta \eta / 2\right]$

 $\Delta \eta = 1.6, \ \delta \eta = 0.1$

in MB events in data

Shapes are dependent on the pile-up condition (N_{PV} , μ) - shape functions fully parameterized for all conditions

Shapes found to be universal in data and MC

 $p_{\rm T}$ density drop dominated by well simulated detector effects – not "hard to model right" soft physics

The University ρ -measurement with ATLAS Calorimeters

P. Loch U of Arizona May 18, 2014

2014

May 16-18,

Same $N_{\rm PV}$, different μ μ increasing

η

Extrapolated Jet Area EJA

Calorimeter-only jet-area based correction with the same jets for ρ -reconstruction and filtering

 ρ is measured in central region and extrapolated to forward

Extrapolated Jet Area Filter EJAF

Jet-area based correction with same (larger) jets or ρ -reconstruction and filtering ρ is measured in central region and extrapolated to forward Selected SoftTerm jets are filtered in addition using tracks

Jet Area Filter JAF

Jet-area based correction with two different jets for ρ -reconstruction and filtering ρ is measured including the forward region – no extrapolation Selected SoftTerm jets are filtered in addition using tracks

Name	Jet Algorithm	R	Filters
EJA	$ ho$ -jets: $k_{ m T}$	0.4	
	filter-jets: $k_{\rm T}$	0.4	
EJAF	$ ho$ -jets: $k_{ m T}$	0.6	JVF > 0.25
	filter-jets: $k_{\rm T}$	0.6	
JAF	$ ho$ -jets: k_{T}	0.8	JVF > 0.25
	filter-jets: $k_{\rm T}$	0.4	

Final States Without Genuine MET

No genuine MET, no jets $p_{\rm T}$ > 20 GeV, versus $N_{\rm PV}$

THE UNIVERSITY . OF ARIZONA.

E

Mitigation of pileup effects at the

2014

16-18,

Мау

Final States Without Genuine MET

No genuine MET, no jets $p_{\rm T}$ > 20 GeV, versus $N_{\rm PV}$

Mitigation of pileup effects at the LHC

2014

16-18,

Мау

THE UNIVERSITY . OF ARIZONA.

Final States Without Genuine MET

No genuine MET, versus μ

15

μ

MET Scale

No genuine MET

MET SoftTerm

 $\rightarrow e\nu$

25

25

N_{PV}

N_{PV}

Inclusive Samples

Final State With Genuine MET

Inclusive Samples

MET Resolutions

Inclusive Samples

MET resolution

- **Component resolution**
 - Well controlled by pile-up mitigation techniques – best if tracking is used as well

Angular resolution

Tracking-based mitigation techniques perform best

19

First attempt for MET SoftTerm pile-up suppression

Purely track-based (STVF), jet-area based (EJA) and combinations (EJAF, JAF)

Calorimetric jet-area based EJA alone does not perform that well – purely stochastic subtraction cannot reinstate performance w/o pile-up Additional use of JVF improves performance (EJAF/JAF)

STVF performs best for MET resolution but suppresses MET scale – and suffers from the same problems as JVF at high pile-up (Pascal Nef's talk) Calorimeter based methods do very well for SumET pile-up mitigation – important for analyses using MET significance

Particular choice is final state dependent

No universal recommendation – mostly hangs on importance of soft term and topology of energy flow

Jet-area based methods clearly an alternative for final states with trackstarved hard-scatter vertex and genuine MET

Further development

Use of GridMedianEstimator – moderates forward flow reconstruction problem

Replace extrapolation?

More dissection of MET soft term

Conglomerate of jetty and diffuse transverse momentum flow – better flow analysis at least in final states with considerable SoftTerm

Linearity of the response is within 1% up to mu=140

- Achieve a correct missing ET scale
- Positive bias at low missing ET is due to the finite resolution of the missing ET, and is highly dependent on the event topology
- Missing ET resolution shifts upwards with pileup, but it does not change the slope with mu
 - Pileup affects the s-term of the resolution, but the k-term remains approximately constant
- Large room for improvements using tracks to suppress pileup

