The AMS Silicon Tracker: construction and performance

G. Ambrosi

on behalf of the AMS Tracker Group VCI 2007

Outline

- The Alpha Magnetic Spectrometer
- The Silicon Tracker
- Construction and qualification
- Performance with particle beams
- Summary

AMS on the International Space Station

- Cosmic Antimatter search with 10⁻⁹ sensitivity
- Indirect Dark Matter search (e⁺, p
 , γ)
- Relative abundance of nuclei and isotopes in primary cosmic rays
- γ ray astrophysics

The purpose of the AMS experiment is to perform accurate, high statistics long measurements of charged (0.5 GV - 1 TV) cosmic rays and γ rays (E>1GeV)

- performance a la `particle physics':
 - high resolution measurements of momentum, velocity, charge and energy
- characteristics to properly work in the space environment:
 - Vibration (6.8 G rms) and acceleration (17 G)
 - Temperature variation (day/night $\Delta T = 100^{\circ}C$)
 - Vacuum (10⁻¹⁰ Torr)
 - Orbital debris and micrometeorites
 - Radiation (Single Event Effect)
- limitation in weight (15000 lb), power (3KW), bandwidht and maintenance
- Compliant with EMI/EMC specs

AMS-01 at KSC before installation on the Shuttle

AMS-01 at KSC before installation on the Shuttle

AMS-01 pilot experiment: STS91, June 2nd - 12th 1998

- 10 days of data taking in orbit:
 - 400 Km altitude
 - latitudes +51.7°
 - all longitudes
- 10⁸ events recorded
- Physics results (Phys. Rep. 366 (2002) 331)
 - precise measurements of primary fluxes
 - detection of secondary fluxes (quasi trapped)
 - antimatter limit at 10⁻⁶

The AMS-02 detector

Silicon spectrometer design goals: dP/P ~ 1% up to 100 GeV MDR ~ 1 TV Z measurement up to Iron

Superconducting magnet

- 2 'dipole' coil, 12 'racetrack' coil (~ no magnetic dipole moment)
- B~0.9 T, 1.1 m inner diameter, 2360 Kg weight
- 55 Km of superconducting wire (NbTi/Cu embedded in pure aluminium)
- Indirect cooling with superfluid helium (1.8 K)
- 2500 liters helium vessel plus cryocuulers for 3 years operation

Silicon Tracker

- 8 layers of double sided silicon detectors arranged in 192 ladders
- 5 honeycomb carbon fiber plane
- detector material ~ 0.04 Xo
- total of 200 kchannels for 192 watt dissipated inside the magnet volume
- 10 μm (30 μm) spatial resolution in bending (non bending) plane
- momentum resol 1.5% at 10 GeV
- high dynamic range front end for charge measurement
- wide temperature range
 (-20/+40 survival, -10/+25 oper.)

Al honeycomb/carbon fiber support planes

Hybrid boxes

Silicon Tracker

- 8 layers of double sided silicon detectors arranged in 192 ladders
- 5 honeycomb carbon fiber plane
- detector material ~ 0.04 Xo
- total of 200 kchannels for 192 watt dissipated inside the magnet volume
- 10 μm (30 μm) spatial resolution in bending (non bending) plane
- momentum resol 1.5% at 10 GeV
- high dynamic range front end for charge measurement
- wide temperature range (-20/+40 survival, -10/+25 oper.)

- Perugia
- 1024 high dynamic range, AC coupled readout channels:
 640 on junction (S) side
 384 on ohmic (K) side
- Impl/readout pitch:
 27.5/110 μm (S side)
 104/208 μm (K side)
- 7 15 wafers (28 60 cm)

192 flight units, 210 assembled in 3 lines: Perugia (I), Geneva-ETHZ (CH), G&A (Carsoli, I)

Ladder components (p side)

G. Ambrosi, 22 Feb. 2007

Perugia

INFN

tituto Nazionale

Silicon positioning and metrology

Sensor alignment in ladders

strip no. (pitch : 110 µm)

Noise and currents (after ~ $3 10^6$ bonds)

Mounting ladders on plane

Tracker integration

Inner Tracker (plane 2, 3 and 4)

G. Ambrosi, 22 Feb. 2007

Tracker ready for cosmic test

G. Ambrosi, 22 Feb. 2007

Space qualification

Vibration tests

ladder on plane

no missing bonds after ladder and test structure vibration cables and cables support

definition of cabled fixation

TV test set-up

Radiation 'hard' electronics

The problem are the SEE (Single Event Effect)

current limit protection is present for all active components

AMS-02 Custom/Common Readout Unit

- Cust/Comm processing unit, software, links.
 - DSP (ADSP-2187L), Gate Array (Actel A54SX-2A), SRAM (Samsung K6R-016V1C), Flash (AMD Am29LV004), LVDS Tx/Rx (TI SN65LVD-39-), etc.
- Cust/Comm monitor & control interfaces.
- Cust/Comm power supplies w/high efficiency.

Perugia

Data Reduction Board (TDR2)

analog signal in

Collect analog data and digitize it (100 μ s irred. dead time)

Perform online data compression

- Remove Pedestals
- Calculate and Remove
 Common Noise
- Search Clusters

Up to 5 KHz trigger rate in compressed mode

G. Ambrosi, 22 Feb. 2007

total bandwith is 2Mbit/s max trigger rate is 2 KHz

Subdetector	Req 'ments	Channels	Raw Kbits
U: TRD	Gas gain	5,248	84
S: ToF+ACC	100 ps	48*4*8	49
T: Tracker	few fC	196,608	3,146
R: RICH	Single gamma	680*16*2	348
E: ECAL	1:60,000	324*(4*2+1)	47
Σ Raw Kbits/event			3,674
* Event Rate			≤ 2 Khz
= Total Raw Data Rate			~7 Gbit/sec

Residual Distributions

Proton Residuals

3th

Gaussian

3% of events

Conclusions

- After the successful test flight on board the Space Shuttle Discovery on June 1998, the AMS-02 Tracker capabilities have been extended
- The detector construction is completed
- Design requirements have been fulfilled
- In September 2007 the Tracker will be integrated in the AMS-02 magnet
- In autumn 2008 the whole AMS-02 detector must be delivered to Cape Canaveral (Florida) ready to launch for 3 years (and more) operation on board the ISS

ISS status on orbit

