

The CMS Pixel Detector

Aaron Dominguez
The IIth Vienna Conference on Instrumentation
21 February 2007

Basic Physics Motivation

~1% occupancy maximum in all layers Good impact parameter resolution in r ϕ & rz Solution: use small silicon pixels at r=4,7,11cm

Pixels part of all Si tracker

Operation • − 10 to -15°C, 4T magnetic field • 40 MHz clock • 60 MHz/cm² at 1E34 cm⁻²s⁻¹ at r=4.4cm Buffer data for 3.2µs for L1 accept • $3EI4 n_{eq}/cm^2/yr$ at $IE34 cm^{-2}s^{-1}$ at r=4.4cmTracking requirements • 3 space points to $|\eta|=2.5$ • $\sim 10 \mu m$ resolution in $r\phi$ • ~20µm resolution in rz (depends on η, cluster size) • >95% efficiency for seeds • Use in HLT standalone

Tracking Continued...

- Need very high segmentation at low radius for low physics occupancy (<1%) → 100, 150 µm pixel size for both barrel & forward
- 4T magnetic field leads to Lorentz drift in rφ improving resolution due to charge sharing
- Forward pixels tilted 20° to improve charge sharing since there is little Lorentz drift
- High signal-to-noise (>30:1) for low fake rate

Tracking Continued...

- The 3 pixel hits up to $|\eta|=2.5$ are used for three main purposes:
 - 1. Seeds (in pairs or triplets) for pattern recognition in all silicon tracker
 - 2. Improve vertex resolution near IP
 - 3. Fast tracking/vertexing in (HLT) trigger using only pixel info. Use for b, T, e, primary vertex & multiple interactions

Expected Performance

Expected average pixel resolution for barrel and forward vs cluster size for pions in jets

Standalone Pixel Tracking (HLT & Offline)

Standalone Pixel Vertexing (HLT & Offline)

- Using the standalone pixel tracks, we can make a fast ID pattern recognition for primary vertexes since they are usually well separated in Z (beam spot ~5 cm long)
- ID pattern recognition is probably good enough for a full 3D (Kalman) fit
- This gives us 3D interaction points online in high level trigger

One event with 4 interactions. These are the vertex locations from the Kalman 3D fit

300 events of 50-80 GeV BB jets with low luminosity pileup

Hardware and Current Status

Readout Chip (ROC)

- 0.25µm IBM CMOS technology
- Reads out 100x150µm pixels
- 52x80 array in double columns
- Pixels have amplifier, shaper, lin2 of 2 discriminator, storage capacitor & charge injection for calibration
- 120 mW/ROC power draw
- Highly tunable (28 DACs)
- Rad hard: noise 100e⁻ → 120e⁻
- 32 data, I2 time stamp buffers for low dead time
- 123 total wafers, yield ~80% good
 ROCs in ~100 tested so far

Data in 6 analog address levels

Data Loss Small and ~VVell Understood

- Readout losses possible during high rates
- Measured with 50MHz
 300 MeV π⁺ test beam (with scintillator trigger for low rate)
- Also measured with test beam
 & simultaneous charge
 injection
- Worst case loss: 0.8%, 1.2%,
 3.8% for 11, 7, 4cm at 100kHz
 LIA

Sensors: n-on-n

- Barrel sensors use p-spray isolation
- All BPIX sensors in hand from CIS
- Forward sensors use partially open pstop
- All FPIX sensors in hand from Sintef.
- Irradiation shows FPIX+ROC 98.8% efficient after 8E14 n_{eq}/cm
- Irradiation shows BPIX+ROC 99.0% efficient after 6E14 n_{eq}/cm
- Expect 6E14 n_{eq}/cm at 4cm after 4-5 years of LHC running

Bump Bonding

- Barrel pixel sensors have bump deposition in-house at PSI with In (~I.25 hr/ module). Production: 4 modules/day
- Forward pixel sensors are bump bonded at two vendors: RTI (US), IZM (Germany). Production: 80 modules/2wks
- Yields > 80% after bumping and dicing. Good connectivity: <<1% bad bumps

Token Bit Manager

- The TBM controls the readout of ROCs by initiating a "token pass" for each LIA
- Rad hard 0.25µm process
- Controls between 8-24 ROCs
- Header/trailer words for event number & error status
- Distributes the LIA and clock to ROCs

PxIFED

Pixel FED 36 optical channels produced by Vienna (Manfred Pernicka, Helmut Steininger)

Forward Pixel Modules

- 5 flavors of plaquettes: 1x2, 1x5, 2x3, 2x4, 2x5.
- 3 or 4 plaquettes make a panel. No holes in coverage
- Blade is two panels back-toback
- Rigorous testing at all stages of production: see
 M. Eads'
 poster

HDI:

flex

Cooling channels

Barrel Modules

- Power & signals come in on kapton cable
- Flex circuit (HDI) mounts on sensor
- Si₃N₄ side strips for support/cooling

Current Status

- We are on schedule for installation in CMS for the 2008 physics run
- For 2007 we will run with a single wedge and two forward blades on one side. This is for learning how to run the detector
- We have built over half of the needed plaquettes for the forward detectors
- PSI has built over half the needed production quality modules

Commissioning at CERN

2007 pilot run detector is being commissioned in "Petal Integration" and "Tracker Integration" facilities

Conclusions

- 18M forward and 48M barrel pixels are in the active production phase of construction
- Sensors & ROCs perform as expected in test beams and after irradiation
- The detectors are on schedule for installation and running in 2008
- Also looking forward to 2007 pilot run
- We are now thinking of the upgrades (!)
 needed for 2012 & 2016 since R&D to
 completion cycle is ~6 years

Other material

Column drain architecture

sketch of a double column

- •Zero suppression in pixel cell
- •Pixel hit information transferred to time stamp and data buffer
- •Kept there during L1 trigger latency
- •Double column stops data aquisition when confirmed L1 trigger ⇒ dead time starts
- •Double column resets after readout ⇒loosing history (trigger latency)
- •Serial readout: 8 (16) ROCs daisy chained. Controlled through readout token

More on testbeam

Data loss at 4cm for 1E34 cm⁻² s⁻¹ luminosity

Barrel Pixel Geometry

Barrel Pixel Module token bit alignment mark manager chip filter capacitors signal/bias cable silicon base plate signal driver chip hybrid alignment mark sensor readout chip Kapton sensor hybrid readout silicon bumps chips base plate

Forward Pixel Schedule

