ATLAS Transition Radiation Tracker (TRT), from construction to installation.

Franck Martin
University of Pennsylvania
(On behalf of the ATLAS-TRT collaboration)

Outline

- TRT generalities :
 - o Barrel
 - o Endcaps
 - Front-end electronics
- Test and quality controls :
 - Front-end electronics
 - o Services
- From 2004 to 2007 :
 - o 2004 combined test beam
 - o 2006 SCT (SemiConductor Tracker) and TRT combined cosmics barrel
 - Installation of the barrel in the ATLAS cavern
 - o 2006 SCT (SemiConductor Tracker) and TRT combined cosmics endcaps
 - o Progresses in the detector description.

TRT in ATLAS

TRT - Barrel

The barrel detector:

- 96 modules
- 1.5 m straws (Ø 4mm) parallel to the beam axis. The wires in the straws are electrically split in the middle. Each end of the straw is read out separately.
- 105088 channels

Radiator = polypropylene

TRT - Endcaps

- 1 Endcap is constituted of :
- ➤ 12 A wheels and 8 B wheels
- ➤ 122880 39cm long radial straws
- ➤ (640 digital + 1920 analog) front-end electronics boards
- ➤ 240 high voltage connectors and 720 HV lines
- ➤ 15360 fuses

Number of channels (2 endcaps) = 245760

TRT Front-End electronics

ASDBLR: Amplifier/Shaper/Discriminator/Base Line Restorer Integrated circuit

DTMROC: Drift Time Measurement ReadOut Chip

Barrel:

Digital and Analog Electronics on the same board.

Endcaps, by 1/32nd of a wheel:

➤ 6 WEBs (Wheel Endcap Board) to connect straws to High Voltage and electronics

➤ 3 boards with 8 ASDBLR chips each (1 ASDBLR chip = 8 straws)

➤ 1 "triplet" with 3x4 DTMROC chips

TRT Front-end Electronics, cont'd

FE-Electronics – Quality Control - Noise

Noise rate (Low level) as a function of the threshold (DAC):

300KHz rate (2.25% occupancy), and Integral of the noise is measured for each channel, first board un-connected then board connected

(0 to 192, one endcap triplet)

Bad channel found, check:

- capacitance
- diode voltage

to identify the problem (electronics / detector ?)

FE-Electronics – Quality Control – Accumulate Rate

Accumulate mode feature of the DTMROC:

Once High Level bit has been set, stay set until the relevant register bit is cleared.

Using different time gates, can compute an « accumulate rate »

• Active gas : Ar:CO₂

• High voltage: 1350V to 1450V

Other tests: timing (fine delay scan), test pulse on low and high gain.

FE electronics test - results

All the results are registered/accessible through a mysql database

Unusable channels:

- Mechanically disconnected
- Broken vias
- Dead electronics
- High Voltage problem (dead fuse)

Barrel:

Side A: 926 Unusable Channels.

Side C : 1050 Total : 1.9%

98.1% of the barrel is functional.

Endcap C: 954: 0.78% Endcap A: 522: 0.42%

Total: 0.6%.

99.4% of the endcaps is functional.

99% of the detector is functional

(remember 350848 channels in total)

TRT endcap – tests of the services

• All HV lines, HV connectors, fuses & HV bridges (!) have been individually tested. (~10% rejection for HV lines, estimation of ~2 dead fuses/year, 2% of the HV bridges replaced)

Absolutely needed, no access to high voltage after LHC start

- Piping for straw (CO2) cooling is leak tight (0.1l/h)
 → Pollution by environmental gas @ level of 0.05l/h
- Piping for electronics cooling (C₆F₁₄) and heat exchanger (1km piping, 880 Swagelok connectors) are leak tight:
 - Very low leak : 12 liters/year (2 endcaps)(well within specifications)
 - Leak smaller than a tiny leak through this single hole in a brazed joint!

Temperature sensors have been calibrated and all the cooling circuit have been checked (Temp. measurement using dedicated Detector Control System (DCS) software.)

2004 combined test beam

First time a full "slice" of ATLAS was tested Very useful exercise for the common DAQ

A lot of results from the Inner detector concerning track reconstruction, alignment, particle Id.

Only PRELIMINARY (2005) results shown here

Barrel SCT+TRT combined tests (cosmics – Ar:CO₂ gas)

- No effect of the SCT running/readout on the TRT noise.
 Noise changed by ~ ±0.05% on 0.5% occupancy
- No effect of running the SCT heater as well. (SCT operate @ -7°C, TRT @ 20°C)

Common DAQ & offline track reconstruction works well. A nice example of a cosmics, using an online/offline TRTviewer.

% occupancy

TRT barrel, installed in the ATLAS pit

Average thres(300KHz) per 1/32nd

Known board feature (noise due to hole in ground plane)

"Map" of the threshold corresponding to 300KHz

♦ • : less than 120 DAC counts C-Side

Voltage/ground corrections limitation

The first straws are shorter straws:

→ lower capacitance → lower noise

80cm

13

Endcap SCT+TRT combined tests. (cosmics) TRIGGER SETUP - 2

160k events on disk, ~4 days of running (24h/24h)
Trigger rate: good agreement MC (0.67Hz) / data (0.7Hz)
Number of combined SCT+TRT tracks ~35k

Endcap SCT+TRT combined tests. (cosmics) TRIGGER SETUP - 1

- TRT FE-Board trigger:
 high threshold set @ 45 DAC counts / ~1KeV
 Cut on multiplicity @ least 3 wheels per A or B sectors
- Fast_or on TTC TP_out to coincidence unit, A || B. (Not shown, then : Sector 1 || Sector 2)

Endcap SCT+TRT combined tests: Rate Equalization

• Go from INDIVIDUAL 300KHz threshold to the threshold to be set for each asdblr (8 straws). Iterating, using the fact that : threshold α exp (Noise Rate/bandwidth)²

Endcap SCT+TRT combined tests.

 No changes in occupancy bigger than the expected run to run fluctuation of ~6.7% (ie ±0.15% on 2.25%)

Combined DAQ
Online monitoring
Offline reconstruction work well

An example of ONLINE track reconstructed using the ATLAS ATHENA+ATLANTIS standard software

Endcap SCT+TRT combined tests. ONLINE Monitoring

No sign of desynchronization between SCT/TRT endcaps

Example of a lost of synch.on a barrel run

Event number

Occupancy is 2 ~ 2.2% (depending of phi sector) Setting was 2.25%

Event number

TRT detector simulation

- Big effort in 2005-2006 to get Geant4 description of the detector "as installed"
- Geometry and material of the TRT have been updated in the simulation
 - Radiation length is 4.49% (was 2.89%) (A wheels) and 3.56% (was 2.19%) (B wheels)

Conclusions

- Construction of the TRT now finished. Quite a success: 99% of the detector is functional!
- Successful combined test of TRT+SCT (for the barrel and for one endcap) on surface (noise study, cosmics, test beam)
- Successful installation of the TRT barrel in the ATLAS cavern.
- Installation of the TRT- endcaps is going on.
- Test and installation of the back-end electronics are progressing.
- Strong software activities in parallel : online & offline monitoring, track reconstruction, "as installed" detector simulation...
- Next: commissioning of the TRT, and combined run of SCT+TRT in the cavern.