

INFN

stituto Nazionale di Fisica Nuclear

The ASACUSA scintillating fiber tracker: commissioning and characterization

> A. Mozzanica^{a†}, D. Bolognini^b, M. Corradini^a, M. Leali^a, E. Lodi Rizzini^a, V. Mascagna^b, M. Prest^b, E. Vallazza^c, L. Venturelli^a, N. Zurlo^a

> > ^a Università degli Studi di Brescia - INFN sezione di Pavia ^b Università degli Studi dell'Insubria - INFN sezione di Milano Bicocca ^c INFN sezione di Trieste

The detector goal

Cross section measurement of slow antiprotons (<5 MeV) on gaseous and solid targets, through annihilation vertex reconstruction.

With the CERN Antiproton Decelerator high intensity pulsed beam (≈10⁷ pbar every 120s), in the framework of the **ASACUSA collaboration.**

The detector during the insertion in the ASACUSA transfer line

The detector design

• Cylindrical geometry, inner shell $\phi = 12$ cm, outer shell $\phi = 16$ cm, 50 cm active region length • 3 layers per shell of 1mm multicladding scintillating fibers by **Bicron (BCF 10)** Two axial and four stereo layers

 Multianode photomultipliers readout (Hamamatsu H7546B)

STUDION

The electronics

The frontend boards house a VA64TAP2.1+LS64 chip pair (by IDEAS) and a Cyclone II FPGA by Altera. The ASICs perform amplification, shaping and discrimination of analog signals, with parallel output. The FPGA implements a 640 Mhz sampling over a 800 ns gate.

x 21

Four fibers in a single anode, for a readout pitch of 2 mm A total of 2688 channels and 42 photomultipliers

•Resolution = $830\mu m$, with a 1.25mm readout pitch 100% detection efficiency

@ INFN-LNF Beam Test Facility Electron energy up to 500 MeV Reference silicon tracking system

Prototype on e⁻ test beam

Cosmic ray setup

- The repeater boards provide biases, digital controls and analog signals
- multiplexing
- Repeaters are controlled and read out by a VME I/O

Time resolution results

Time resolution has been evaluated, with digital readout, using a reference scintillator as trigger on cosmic rays.

Single MA-Photomultiplier module, in a

000							
-		Δ		2	2-		
00			σ	= 2	.23	s ns	5
00							
-							
00							
00							
	-						
0		······					

The coincidence among 4 scintillators provides the trigger system

A silicon tracking system with 40µm resolution allows resolution studies

2007

-24,

9

Febi

nstrumentation,

