Development and Study of the Multi Pixel Photon Counter

Satoru Uozumi (Shinshu University, Japan) for the KEK Detector Technology Project / Photon Sensor Group Vienna Conference on Instrumentation 2007, Feb 19-24, 2007

- 1. Introduction
- 2. Fundamental Performance
- 3. Application to High Energy Physics
- 4. Summary

KEK Detector Technology Project Photon Sensor Group (http://rd.kek.jp/) (KEK, Kobe, Kyoto, Nagoya, Nara-WU, NDA, Niigata, Shinshu, Tokyo/ICEPP, Tsukuba)

S. Gomi, H. Hano, T. Iijima, S. Itoh, K. Kawagoe, S. H. Kim, T. Kubota, T. Maeda, T. Matsumura, Y. Mazuka,
K. Miyabayashi, T. Murakami, T. Nakadaira, T. Nakaya,
H. Otono, E. Sano, T. Shinkawa, Y. Sudo, T. Takeshita,
M. Taguchi, T. Tsubokawa, S. Uozumi, M. Yamaoka,
H. Yamazaki, M. Yokoyama, K. Yoshimura, T. Yoshioka

And special thanks to Hamamatsu photonics K.K.

The Multi Pixel Photon Counter (MPPC)

- Each pixel works as a Geiger-mode APD,
- One pixel can count only one photon.
 → need multi pixel structure for photon counting
- Electric charges from all the fired pixels are summed up and read out as a signal.
- There are 4 different types available:

# of pixels	Sensor size	Pixel size	Geometrical eff.
100		100 µm	~ 0.65
400	1x1 mm ²	50 µm	~ 0.5
1600		25 µm	~ 0.25

substrate p⁺

Excellent Photon Counting Ability

The MPPC has lots of advantages

	Photomultiplier	MPPC
Gain	~10 ⁶	10 ⁵ ~10 ⁶
Photon Detection Eff.	0.1 ~ 0.2	0.2 (1600pix.) ~ 0.5 (100pix.)
Response	fast	fast
Photon counting	Yes	Great
Bias voltage	~ 1000 V	~ 80 V
Size	Small	Compact
B field	Sensitive	Insensitive
Cost	Expensive	Not expensive
Dynamic range	Good	Determined by # of pixels
Long-term Stability	Good	Unknown
Robustness	decent	Unknown
Noise (fake signal by	Quiet 1 pixel noise exist	
		(order of TUU - 5UU KHZ)

Fundamental performance

- Gain
- Dark Noise Rate
- Inter-pixel Cross-talk
- Photon Detection Efficiency
- Uniformity in a pixel

Variation of V_o and C over 750 MPPCs

(Measured at 15°C)

- ~750 pieces of 1600 pixel MPPCs have been tested.
- Device-by-device variation is less than a few %.
- → No need for further selection or categorization on massive use ! Just need a small tuning of operation voltages.

Fundamental Performance – Dark Noise Rate

- The dark noise is caused by thermal electrons.
- Its rate depends on both over-voltage and temperature.
- More number of pixels
 - → smaller active area
 - → fewer noise rate

Fundamental Performance - Inter-pixel Cross-talk -

- Inter-pixel cross-talk is caused by a photon created in an avalanche
- Probability of the cross-talk has been measured using dark noise rates:

Noise Rate(≥ 2 pix.) $P_{crosstalk}$ Noise Rate(>1 pix.) 30 °C **1600 pixel** • 25 °C Cross-talk probability • 20 °C 0.3 • 15 °C • 10 °C 0.2 0 °C -20 °C 0.1 01.5 2 4.5 2.5 3 3.5 5 4 $V_{\text{bias}} - V_0 (V)$

 Cross-talk probability is affected by over-voltage, but not affected by temperature.

Fundamental Performance - Photon Detection Efficiency (P.D.E) -

 $PDE(MPPC) = Q.E. \times \epsilon_{Geiger} \times \epsilon_{geom}$

- Q.E. (~ 0.9) ... Quantum Efficiency
- ϵ_{Geiger} (~ up to 0.9, depends on bias voltage)

... Probability to cause avalanche

• ε_{geom} (0.25 ~ 0.65, depends on pixel size)

... Fraction of sensitive region in a sensor

Measurement of relative P.D.E.

 Inject same light pulse into both the MPPC and the PMT, and compare light yield measured by both:

1600 pixel Microscopic view

Laser Scan in One Pixel

- Pin-point scan has been done using YAG laser $(\lambda = 532 \text{ nm})$ with spot size ~ 1 μ m.
- Variation of photon sensitivity and gain in one pixel are evaluated.
- Observed variation is 2 ~ 5 % in a sensitive area for the 100 / 400 / 1600 pixel MPPCs.

Practical Applications

Application to High Energy Physics - Calorimeter for linear collider experiment -

Application to High Energy Physics - T2K near detectors -

- Belle Ring Imaging Cerenkov Detector -

- Capture Cerenkov ring image for particle ID
- For the ring imaging,
 - Sufficient photon detection efficiency
 - Position resolution (~5 mm)

are required for photon sensor.

- MPPC is a powerful candidate for this purpose,
- Larger sensor area (~3x3 mm²) is desired in future development.

The MPPC is still evolving ... Stay tuned for future development !

Summary

- The MPPC is a promising photon sensor which has many remarkable features.
 - High gain, compact size, low-cost, excellent P.D.E., etc
- Extensive R&D of the MPPC is ongoing in KEK DTP group collaborating with Hamamatsu photonics.
 - Study and improvement of basic properties ... underway
 - Evaluation of variation over many samples ... underway
 - Study radiation hardness (for γ -ray, neutron) ... just started
 - Evaluate robustness and long-term stability ... start soon
 - Test magnetic-field tolerance ... near future
- Tests for actual use at several high energy physics experiments are also underway.
- Applications in various other fields are being explored.
 - Positron Emission Tomography, etc...
- The improvement of the performance will be continued toward the "Perfect Photon Sensor" !

Novel Photon Detector Workshop June-2007 Kobe, Japan

The KEK Detector Technology Project group will host an international workshop for the future photon sensors. Check the KEKDTP web site: <u>http://rd.kek.jp/</u>

Contact : Takeshi.Nakadaira@kek.jp

Backups

Application to Other Fields

Positron Emission Tomography (PET)

... a powerful method to detect cancer activity.

- Capture gamma pair and identify position of the cancer.
- Spatial resolution is greatly improved by finer granularity (~1 mm of crystal block size).
- MPPC is ideal to read out each individual crystal blocks.

MPPCs on sale

Number of pixels	100	400	1600	
Sensor size	1 x 1 mm ²			
Nominal Bias Volt.	70 ±10 V		$77{\pm}10$ V	
Gain (x 10 ⁵)	24.0	7.5	2.75	
Noise Rate (kHz)	400	270	100	
Photon Detection Efficiency	65 %	50 %	25 %	
Temperature dependence ($\Delta V_0 / \Delta T$)	50 mV / ºC			

(Numbers from HPK catalog)

- Hamamatsu photonics is starting to deliver the MPPC.
- See following page for more information: http://www.hamamatsu.com/news/2006/2006_1 0_26.html