Structure of charmed baryons and their productions studied at JPARC

Atsushi Hosaka, RCNP, Osaka The 3rd Korea-Japan Workshop on Nuclear and Hadron Physics at J-PARC March 20-21, Inha, Korea

1. Introduction

Key word: *Heavy* quarks/hadrons

- → Spin becomes irrelevant, decouples
 - Flavor symmetry is broken \rightarrow HQ symmetry

Charmed baryons

2. Structure

A heavy quark differentiate *diquark* motions = *modes*

Important ingredient for hadron dynamics to know how they appear in baryon spectroscopy

2. Structure

A heavy quark differentiate *diquark* motions = modes

Important ingredient for hadron dynamics to know how they appear in baryon spectroscopy

Decays

Q-mode: $(qq)^*$ decays by emitting a pion λ-mode: Q* decays by emitting a heavy meson

How they appear in excited B_c's
→ Mixing of the modes

Wave function

Quark model calculation with spin-spin interaction: Yoshida, Sadato, Hiyama, Oka, Hosaka

Mixing of
$$\psi = c_{\lambda} |l_{\lambda} = 1 \rangle + c_{\rho} |l_{\rho} = 1 \rangle$$

 λ -mode dominant state

(2) Production

Strategies:

- At high energies: Forward peak \rightarrow t-channel dominant
- Absolute values

Regge for the estimation of charm vs strange

• <u>**Relative ratios**</u> of transitions to various B_c^*

One step process in a Qd model

Absolute values

Regge method with couplings fixed at strangeness

Sang-Ho Kim (talk in this workshop tomorrow) Regge method with couplings fixed at strangeness

<u>Relative ratios</u> to various $B_{\rm c}$

- Single step $q \rightarrow Q$: λ modes are excited
- *V*, *PS* for *D** and *V*, *S* for *D* productions with various *B*'s of $l_{\lambda} = 0, 1, 2$ (18 baryons)
- Estimate forward scattering amplitudes

Single-step $qd \rightarrow Qd$ reaction

Example of V-exchange

Single-step $qd \rightarrow Qd$ reaction

Example of V-exchange

$$t \sim 2fgk_{D^*}^0 \vec{k}_{\pi} \times \vec{e} \cdot \vec{J}_{fi} \frac{1}{q^2 - m_{D^*}^2} \qquad \vec{q}_{eff} = \frac{m_d}{m_d + m_q} \vec{P}_N - \frac{m_d}{m_d + m_c} \vec{P}_B$$
$$\vec{J}_{fi} = \int d^3x \,\varphi_f^\dagger \left[\frac{\vec{p}_f}{m_c + E_c} + \frac{\vec{p}_i}{m_q + E_q} + i\vec{\sigma} \times \left(\frac{\vec{p}_f}{m_c + E_c} - \frac{\vec{p}_i}{m_q + E_q} \right) \right] \varphi_i \, e^{i\vec{q}_{eff} \cdot \vec{x}}$$

V-exchange at forward

$$t_{fi} \sim \left(\frac{P_B}{2(m_c + m_d)} - 1\right) k_{D^*}^0 k_\pi \left\langle \mathbf{B}_c \right| \vec{e}_\perp \cdot \vec{\sigma} e^{i\vec{q}_{eff} \cdot \vec{x}} \left| \mathbf{N} \right\rangle \frac{1}{q^2 - m_{D^*}^2}$$

Matrix elements

$$V: \quad \langle B_{c} | \vec{e}_{\perp} \cdot \vec{\sigma} e^{i\vec{q}_{eff} \cdot \vec{x}} | N \rangle$$

$$Transverse$$

$$PS: \quad \langle B_{c} | \vec{e}_{//} \cdot \vec{\sigma} e^{i\vec{q}_{eff} \cdot \vec{x}} | N \rangle$$

$$Longitudinal$$

$$S: \quad \langle B_{c} | 1 e^{i\vec{q}_{eff} \cdot \vec{x}} | N \rangle$$

(Geometric) ~ [spin × angular momentum] × isospin (Dynamic) ~ Radial wave function

Geometric part = $\sum_{\text{spins}} [\text{spin} \times \text{angular momentum}]^2$

March 20-21, 2014

Geometric part = \sum_{spins} [spin × angular momentum] ²									
Vector, PScalar, Scalar									
l = 0	$\Lambda_c(\frac{1}{2}^+)$	$\Sigma_c(\frac{1}{2}^+)$	$\Sigma_c(\frac{3}{2}^+)$						
V	1	1/9	8/9						
\mathbf{PS}	1	1/9	2/9						
\mathbf{S}	1	1							
l = 1	$\Lambda_c(\frac{1}{2}^-)$	$\Lambda_c(\frac{3}{2}^-)$	$\Sigma_c(\frac{1}{2}^-)$	$\Sigma_c(\frac{3}{2}^-)$	$\Sigma_c'(\frac{1}{2}^-)$	$\Sigma_c'(\frac{3}{2}^-)$	$\Sigma_c^{\prime}(\frac{5}{2}^-)$		
V	1/3	2/3	1/27	2/27	2/27	56/135	2/5		
\mathbf{PS}	1/3	2/3	1/27	2/27	8/27	8/135	24/45		
\mathbf{S}	1/3	2/3	1/3	2/3	_	_	_		
l=2	$\Lambda_c(\frac{3}{2}^+)$	$\Lambda_c(\frac{5}{2}^+-)$	$\Sigma_c(\frac{3}{2}^+)$	$\Sigma_c(\frac{5}{2}^+)$	$\Sigma_c'(\frac{1}{2}^+)$	$\Sigma_c'(\frac{3}{2}^+)$	$\Sigma_c'(\frac{5}{2}^+)$	$\Sigma_c'(\frac{5}{2}^+)$	
V	2/5	3/5	2/45	3/45	2/45	8/45	38/105	32/105	
\mathbf{PS}	2/5	3/5	2/45	3/45	8/45	8/45	8/105	16/35	
\mathbf{S}	2/5	3/5	2/5	3/5	_	_	_	_	

Dynamic part ~ radial integral

$$R_{00}(r) = \frac{\alpha^{3/2}}{\pi^{1/4}} 2e^{-(\alpha^2/2)r^2}$$

$$GS \quad I_0 = \langle \psi_{000} | \sqrt{2} e^{i\vec{q}_{eff} \cdot \vec{x}} | \psi_{000} \rangle = \sqrt{2} \left(\frac{\alpha'\alpha}{A^2} \right)^{3/2} e^{-q_{eff}^2/(4A^2)}$$

$$A^2 = \frac{\alpha^2 + \alpha'^2}{2} \qquad \qquad \left(\frac{\alpha' q_{eff}}{A^2} \right)^0$$

p-wave

$$I_1 = \frac{(\alpha'\alpha)^{3/2} \alpha' q_{eff}}{A^5} e^{-q_{eff}^2/(4A^2)} \qquad \left(\frac{\alpha' q_{eff}}{A^2}\right)^1$$

d-wave

$$I_2 = \frac{1}{2} \sqrt{\frac{2}{3}} \frac{(\alpha \alpha')^{3/2}}{A^3} \left(\frac{\alpha' q}{A^2}\right)^2 e^{-q_{eff}^2/(4A^2)}$$

Excited states are not suppressed

Korea-Japan Workshop at J-PARC

 $\left(\frac{\alpha' q_{eff}}{A^2}\right)^2$

Diquarks

$$d_{S} = qq(S = 0), \quad d_{A} = qq(S = 1)$$

ss attractive ss repulsive

$$B_{C} \quad \Lambda(1/2^{+},gs) = |[d_{S}c]\rangle, \quad \Sigma(1/2^{+},gs) = |[d_{A}c]\rangle$$

$$\Lambda(1/2^{-},\lambda) = c_{\lambda} |[d_{S}c], l_{\lambda} = 1\rangle + c_{\rho} |[d_{A}c], l_{\rho} = 1\rangle$$

$$\Sigma(1/2^{-},\lambda) = c_{\lambda} |[d_{A}c], l_{\lambda} = 1\rangle + c_{\rho} |[d_{S}c], l_{\rho} = 1\rangle$$

$$N = p(1/2^{+},gs) = c_{\beta} |[d_{A}u]\rangle + c_{\beta} |[d_{A}u]\rangle$$

$$N \quad p(1/2',gs) = c_{S} |[d_{S}u]\rangle + c_{A} |[d_{A}u]\rangle$$

SU(6) quark model: $c_{S} = c_{A}$
Strong scalar diquark: $c_{S} > c_{A}$

Diquark correlations enhance Λ , while suppress Σ productions

Summary

- ρ and λ modes are separately studied (Isotope shift) better in Λ than in Σ
- ρ-modes may open di-quark spectroscopy
- Systematic study in strangeness is important

- Production in one step process is studied
- Higher excited (Λ) states can be produced as may as the ground state

Density correlations

Indicates significant attraction between quarks in good diquark pair

$$d_{S} = qq(S = 0), \quad d_{A} = qq(S = 1)$$

$$\Lambda(1/2^{-},\lambda) = \text{dominant} |[d_{S}c], l_{\lambda} = 1\rangle + |[d_{A}c], l_{\rho} = 1\rangle$$

$$\Sigma(1/2^{-},\lambda) = \text{dominant} |[d_{A}c], l_{\lambda} = 1\rangle + |[d_{S}c], l_{\rho} = 1\rangle$$

Spectrum

Regge amplitude: t-channel and forward

$$K \xrightarrow{n} l_t = 0, 1, 2$$

$$A(s, t) = 16\pi \sum_{l=0}^{\infty} (2l+1)A_l(t)P_l(z_t)$$
For one l

$$z_t = \cos \theta_t = 1 + \frac{2s}{t-4m^2}$$

$$\rightarrow f(t)s^l$$
This wish to consider the second term its.

→ Need to sum over all *l*

Regge amplitude:
$$A(s,t) \sim R(\alpha(t))P_{l=\alpha(t)}(z_t) \sim s^{\alpha(t)}$$

Form factor $\bigwedge \alpha(t)$: Regge trajectory
 \sim forward peak \rightarrow Unitarity OK

Regge's mechanism -- Brief idea --

t-channel $K^- p \to \pi^- \Sigma^+$ Resonances K*, ... can be exchanged $K^- p \to \pi^+ \Sigma^-$ No resonance exists with Q = 2

Korea-Japan Workshop at J-PARC

Pion induced reactions

D* production: V and PVD production: V and S

Forward peak, where, they do not interfere

Results

$\mathcal{R} \sim rac{1}{\mathrm{Flux}} imes \sum_{fi} t_{fi} ^2 imes \mathrm{Phase \ space} \sim C_{J^P} \left I_L \right ^2$									
l = 0	$\Lambda_c(\frac{1}{2}^+)$	$\Sigma_c(\frac{1}{2}^+)$	$\Sigma_c(\frac{3}{2}^+)$						
	1	1/9	8/9						
l = 1	$\Lambda_c(\frac{1}{2}^-)$	$\Lambda_c(\frac{3}{2}^-)$	$\Sigma_c(\frac{1}{2}^-)$	$\Sigma_c(\frac{3}{2}^-)$	$\Sigma_c'(\frac{1}{2}^-)$	$\Sigma_c'(\frac{3}{2})$	$\Sigma_c^{\prime}(\frac{5}{2}^-)$		
	1/3	2/3	1/27	2/27	2/27	56/135	2/5		
l = 2	$\Lambda_c(\frac{3}{2}^+)$	$\Lambda_c(\frac{5}{2}^+-)$	$\Sigma_c(\frac{3}{2}^+)$	$\Sigma_c(\frac{5}{2}^+)$	$\Sigma_c'(\frac{1}{2}^+)$	$\Sigma_c'(\frac{3}{2}^+)$	$\Sigma_c'(\frac{5}{2}^+)$	$\Sigma_c^{\prime}(\frac{5}{2}^+)$	
	2/5	3/5	2/45	3/45	2/45	8/45	38/105	32/105	
Charm $k_{\pi} = 2.71 [\text{GeV}]$									
l = 0	$\Lambda_c(\frac{1}{2}^+)$	$\Sigma_c(\frac{1}{2}^+)$	$\Sigma_c(\frac{3}{2}^+)$						
	1.00	0.02	0.16						
l = 1	$\Lambda_c(\frac{1}{2}^-)$	$\Lambda_c(\frac{3}{2}^-)$	$\Sigma_c(\frac{1}{2}^-)$	$\Sigma_c(\frac{3}{2}^-)$	$\Sigma_c'(\frac{1}{2}^-)$	$\Sigma_c'(\frac{3}{2}^-)$	$\Sigma_c^{\prime}(\frac{5}{2}^-)$		
	0.90	1.70	0.02	0.03	0.04	0.19	0.18		
l = 2	$\Lambda_c(\frac{3}{2}^+)$	$\Lambda_c(\frac{5}{2}^+-)$	$\Sigma_c(\frac{3}{2}^+)$	$\Sigma_c(\frac{5}{2}^+)$	$\Sigma_c'(\frac{1}{2}^+)$	$\Sigma_c'(\frac{3}{2}^+)$	$\Sigma_c'(\frac{5}{2}^+)$	$\Sigma_c'(\frac{5}{2}^+)$	
	0.50	0.88	0.02	0.02	0.01	0.03	0.07	0.07	

Charm $k_{\pi} = 2.71$ [GeV]

Strange $k_{\pi} = 1.59 [\text{GeV}]$								
l = 0	$\Lambda_c(\frac{1}{2}^+)$	$\Sigma_c(\frac{1}{2}^+)$	$\Sigma_c(\frac{3}{2}^+)$					
	1.00	0.067	0.44					
l = 1	$\Lambda_c(\frac{1}{2}^-)$	$\Lambda_c(\frac{3}{2}^-)$	$\Sigma_c(\frac{1}{2}^-)$	$\Sigma_c(\frac{3}{2}^-)$	$\Sigma_c'(\frac{1}{2}^-)$	$\Sigma_c'(\frac{3}{2}^-)$	$\Sigma_c^{\prime}(\frac{5}{2}^-)$	
	0.11	0.23	0.007	0.01	0.01	0.07	0.067	
l = 2	$\Lambda_c(\frac{3}{2}^+)$	$\Lambda_c(\frac{5}{2}^+-)$	$\Sigma_c(\frac{3}{2}^+)$	$\Sigma_c(\frac{5}{2}^+)$	$\Sigma_c'(\frac{1}{2}^+)$	$\Sigma_c'(\frac{3}{2}^+)$	$\Sigma_c'(\frac{5}{2}^+)$	$\Sigma_c'(\frac{5}{2}^+)$
	0.13	0.20	0.007	0.01	0.004	0.02	0.038	0.04

Interesting systematics

March 20-21, 2014

Korea-Japan Workshop at J-PARC

Diquark correlation

In QCD

$$C(\mathbf{r}_{u},\mathbf{r}_{d};t) = \langle 0 | J_{\Gamma}(0,2t) \rho_{u}(\mathbf{r}_{u},t) \rho_{d}(\mathbf{r}_{d},t) J_{\Gamma}^{\dagger}(0,0) | 0 \rangle$$

$$\rho(\mathbf{r},t) = \overline{q}_{f} \gamma_{0} q_{f}, \quad f = u,d$$

$$J_{\Gamma}(x) = \varepsilon^{abc} [\mathbf{u}_{a}^{T}(x) C \Gamma d_{b}(x) \pm d_{a}^{T}(x) C \Gamma u_{b}(x)] s_{c}(x)$$

$$ud$$
-diquark Static heavy quark

 $5/2^- \rightarrow 1/2^+$ M2, E3 transition

$1/2^{-} \rightarrow 1/2^{+}$ E1 transition

$$y = \left(\frac{x}{a}\right)^n \exp\left(-\frac{x^2}{4a^2}\right) \qquad n \sim \Delta l$$

