The PID counter for charmed baryon spectroscopy at J-PARC

T. Yamaga Research Center for Nuclear Physics (RCNP) Osaka Univ.

Contents

Physics motivation

Conceptual design

Simulation study

T. Yamaga

Physics motivation

Hadron structure

- Constituent quark model
 - Good for ground state
 - » Sometimes fails in exited stats
- Diquark correlations
 - it can describe hadron structure

Charmed baryons

- Light qq pair forms a diquark
 - Diquark correlation will be understood

T. Yamaga

Experiment @ J-PARC High-p beam line

igstarrow Charmed baryon spectroscopy via (π^-, D^{*-})

High PID performance

Background estimation

Two different types of background

- True background
 - $(K^+, \pi^-, \pi^-): 2.43 \text{ mb}$
- Wrong PID background
 - $(\pi^+, \pi^-, \pi^-) : 10.7 \text{ mb}$ » $\pi^+ \to K^+$

•
$$(p, \pi^-, \pi^-): 17.4 \text{ mb}$$

» $p \to K^+$

PID is essential.

Wrong PID enhanced by a factor 20

Simulation

π

Scattered particles distribution

Momentum

• Up to 16 GeV/c

Position

Large acceptance is necessary

Counts

500

400

300

200

100

No.

T. Yamaga

6

Simulated by JAM code

π

Scattered particles distribution

Momentum

▶ Up to 16 GeV/c

Position

Counts

25000

20000

15000

10000

Design of PID counter

Requirement

- Momentum range
 - 2 16 GeV/*c*
- High PID performance
 - PID efficiency : > 90%
 - Wrong PID : < **6**%

The Ring imaging Cherenkov (RICH) counter

PID by measuring Cherenkov angle

The RICH counter

- Photo-detection plane : position resolution
- Optics system

Conceptual design

Radiator

Radiator	n	Thickness
Aerogel	1.04	6.0 <i>cm</i>
C_4F_{10}	1.00137	150 cm

Designed PID counter

Performance study by simulation

Geometry

- Radiator
- Photon detector

Incident particle

- ► π, K, p
 - $p = 1 16 \, \text{GeV}/c$
 - $\theta < 0.5$ rad

Photon detector

PMT / MPPC QE value

Analysis of Ring image

Dark current of the photon sensor

Estimate the effect from dark current

► $R_{I_D} = 1$ MHz (MPPC value; $3 \times 3 \text{ mm}^2$)

Dark current of the photon sensor

Estimate the effect from dark current

- ► $R_{I_D} = 1$ MHz (MPPC value; $3 \times 3 \text{ mm}^2$)
- QE of MPPC

Dark current of the photon sensor

Estimate the effect from dark current

- $ightarrow R_{I_D} = 1 \text{ MHz} (MPPC \text{ value; } 3 \times 3 \text{ mm}^2)$
- QE of MPPC

400

Performance of PID counter

Summary

Charmed baryon spectroscopy at J-PARC

Design the PID counter

PID performance was obtained by using simulation

- **•** Efficiency of Pion and Kaon is 99%
- **•** Background from wrong PID was 6%.