Aerogel Cherenkov counter system of E13 experiment for the (K^-, π^-) reaction

Tohoku University Kosuke Tanabe for the E13 collaboration

contents

- Overview of the E13 experiment (hypernuclear gamma-ray spectroscopy)
- Aerogel Cherenkov(AC) counter system for the (K^-, π^-) reaction
- Performance evaluation of ACs
- Evaluation of the (K^-, π^-) trigger
- Summary

J-PARC E13 experiment

- produce hypernuclei by (K^-, π^-) reaction
- detect gamma rays with Ge detectors to investigate the detailed energy structures (gamma ray spectroscopy)
 - \rightarrow study of ΛN interaction

Aerogel Cherenkov Counter (AC)

$$^4_{\Lambda}\text{He} \cdots ~p_{K}{=}1.5~\text{GeV/c}$$
 , $p_{\pi}{\thicksim}$ 1.4 GeV/c

$$^{19}_{\Lambda}$$
F ··· p_K=1.8GeV/c , p_π ~1.7 GeV/c

index

- Aerogel of n=1.03
- Momentum threshold $\rightarrow \pi^-: 0.57 \text{GeV/c}, \text{ K}^-: 2.0 \text{ GeV/c}$

 π^-, K^- identification is possible at 1.8GeV/c, 1.5GeV/c

reflector

Teflon •••diffused reflector、high reflective index at sensitive area of PMT

PMT I

H6614-70UV : HV ~+2 kV

2" Fine mesh PMT

•••tolerance to the fringing field of SKS magnet

$$(K^-, \pi^-)$$
 Trigger system

Trigger rate < 2k/spill required

$$(K^-, \pi^-)$$
 Trigger system

Trigger rate < 2k/spill required

(*K*, π) trigger $\overline{BAC1 \oplus BAC2}$ SAC1 $\overline{SFV \times \overline{SAC3}}$

$$(K^-, \pi^-)$$
 Trigger system

Trigger rate < 2k/spill required

Detector size

Performance evaluation of detectors

Commissioning data at J-PARC K1.8 Beam Line in March through May, 2013.

(beam momenta = 1.8, 1.5, 1.3 GeV/c)

- Performance evaluation
 - Light yield
 - Detection efficiency of pion and Kaon
- Evaluation of online (K^-, π^-) trigger

• Search of optimal beam conditions

Momentum dependence of light yield for pion

Online threshold and efficiency

Evaluation of incident Kaon trigger

Scattered π^- ID system

- (K^-, π^-) trigger contains k beam through events .
 - \rightarrow veto k beam through events by using SAC3 & SFV .

SAC3 & SFV efficiency and trigger performance

SAC3 efficiency					
	1.8 GeV/c	1.5 GeV/c			
Pi eff (%)	99.2 <u>+</u> 0.2	98.8 <u>+</u> 0.3			
K eff (%)	8.8±0.3	7.8 <u>±</u> 0.4			

• Trigger performance with SAC3 & SFV

Optimization of beam condition

 π^- beam rate should be set less than 150k/spill

Target : CH2(3 g/cm²) , MR power=20kW, ESS1,2= \pm 250 kV

Momentum	K-beam (k/spill)	Pi-beam (k/spill)	request	DAQ efficiency
1.5 GeV/c	320	120	1.5 k	0.75
1.8 GeV/c	290	80	1.9 k	0.72

the maximum yield K^- : ~300 k/spill π^- : ~100 k/spill

Summary

- We will perform E13 experiment (hypernuclear gamma ray spectroscopy with the (K^-, π^-) reaction).
- ACs PID system was developed to identify the (K^-, π^-) reaction.
- Performance evaluation under real beam condition is finished.
 - Light yield of each detector is enough.
 - Pi efficiency : >99.5%, for K-beam rate \sim 300k/spill,
 - − K efficiency : <2%</p>
 Pi-beam rate ~100k/spill.
 - − Acceptable trigger rate : ~1.5 k/spill
 - Beam condition optimized

We were and will be ready!