Recent results from J-PARC for E10 and E27

Dept. of Physics, Tohoku University H. Tamura

Contents

- **1. Present Status of Hadron Hall Expt's**
- 2. E10: Neutron-Rich Hypernuclei
- Sakaguchi's sides 3. E27: K-pp Systems Ichikawa's sides
- 4. Future Plan of Hadron Hall

Present status of J-PARC Hadron Hall and nuclear/hadron physics

Status of hadron/nuclear experiments (stage2)

E19 (Pentaquark): Finished. Not observed and gave a stringent limit for hadronic production process. Published in PRL.

E10 (Neutron-rich Λ **hyp.):** 1st phase finished. ⁶_{Λ}H not observed, published in PLB. *Tamura*

E27 (K-pp by (π^+, K^+)): A part of data taken and analysis almost finished.

E15 (K-pp by (K-,n)): Running. A half of the phase 1 data taken and under analysis. *Inoue*

E13 (γ **spectroscopy of** Λ **hyp.):** Commissioning for phase 1 finished/waiting. **E31 (** Λ (1405)) : Ready for commissioning/waiting.

E07, E03 ($\Lambda\Lambda$ **hypernuclei,** Ξ **atomic X-rays):** Under preparation/waiting.

E17, E18 (K atomic X-rays, weak decay of Λ hyp.): Under preparation/waiting.

E05, E42: (E hypernuclei, H dibaryon): Under spectrometer construction.

E10 experiment on neutron-rich hypernuclei

Atsushi Sakaguchi (Osaka University) for the **J-PARC E10** Collaboration

(talk is based on Phys. Lett. B729 (2014) 39)

Interest of neutron-rich Λ hypernuclei

• **ΛN interaction** as the first step to baryon-baryon interactions

- Properties of ΛN interaction have been clarified from hypernuclear structures via $(\pi^+, K^+)/(K^-, \pi^-)$ reactions and γ spectroscopy
- But ΛN interaction is modified in nuclei due to $\Lambda N-\Sigma N$ mixing process, giving a large effect of ΛNN 3-body force
- Understanding possible hyperon mixing in neutron stars
 - Interaction of Λ in neutron-rich matter can be "simulated" by neutron-rich hypernuclei
- Extending the hypernuclear chart
 - "glue-like role" : A in Os orbit stabilizes
 the host nucleus
 - Exotic structures of neutron-rich nuclei can be studied from nuclear response by a Λ
 - = "impurity effect" (structure change of the host nucleus by a Λ)

Ν

Σ

How to extend S=-1 nuclear chart?

How to extend S=-1 nuclear chart?

(π^{-} ,K⁺) Reaction

Convert pp -> Λ n 2 step: $\pi^- p \rightarrow n \pi^0$, $\pi^0 p \rightarrow \Lambda K^+$ or $\pi^- p \rightarrow \Lambda K^0$, $K^0 p \rightarrow n K^+$ 1 step: $\pi^- p \rightarrow \Sigma^- K^+$, $\Sigma^- p <-> \Lambda n$

P.K. Saha et al. PRL 94 (2005) 052501

80

 $-B_{\Lambda}$ [MeV]

100

120

140

<u>AN- Σ N Mixing and n-rich A Hypernuclei</u>

- Strong mixing of ΛN and ΣN pairs B.F. Gibson et al. PR C6 (1972) 741
- Coherent effect in proton/neutron-rich nuclei Akaishi et al. PRL 84 (2000) 3539

$\Lambda\Sigma$ Mixing in n-rich hypernucleus ${}^{6}_{\Lambda}$ H

• Possible observation of mixing effect in ${}^{6}_{\Lambda}$ H structure

Structure of ${}^{6}_{\Lambda}$ H hypernucleus

- FINUDA reported 3 candidate events of ${}^{6}_{\Lambda}$ H production
- Sensitive to ΛN interaction and also properties of ⁵H

DCX: Double Charge-eXchange NCX: Non Charge-eXchnage

Studies of n-rich hypernuclei by DCX

- Experiments by the (stopped-K⁻, π^+) reaction
 - FINUDA: M. Agnello et al. PRL 108 (2012) 042501
 - reported 3 candidate events of ${}^{6}_{\Lambda}$ H production
 - measured production and decay to reduce background ⁶Li(stopped- K^-, π^+)⁶_A $H \longrightarrow {}^{6}H \rightarrow {}^{6}He + \pi^ BR(DCX, {}^{6}_{A}H)/BR(NCX) \approx 2 \times 10^{-3}/event$
- Experiment by the (π^-, K^+) reaction
 - KEK E521: P.K. Saha et al. PRL 94 (2005) 052501
 - successfully produced ${}^{10}_{\Lambda}$ Li ${}^{10}B(\pi^-, K^+)^{10}_{\Lambda}Li$
 - background free, only production was measured

$$\frac{d\sigma}{d\Omega}(DCX,^{10}_{\Lambda}Li) \approx 10nb/sr \quad \frac{d\sigma}{d\Omega}(DCX) / \frac{d\sigma}{d\Omega}(NCX) \approx 10^{-3}$$

Design of E10 Experiment

- Missing mass spectroscopy for the ⁶Li(π^- ,K⁺)X reaction
 - K1.8 beam line spectrometer: π^- beams at 1.2 GeV/c
 - SKS spectrometer: produced K⁺ around 0.9 GeV/c

Setup of E10

SSD BH2

Q13

BC4

Q12

D4

Q11

Q10

BFT

BH1

GC

MS2

BC3

- K1.8 beam line spectrometer (QQDQQ)
 - 1.2 GeV/c pion beams
 - Tracking of beam pions
 - Scintillating fiber tracker: BFT
 - Drift chambers (3mm wire pitch): BC3, BC4
 - 3rd order transfer matrix \rightarrow dp/p ~ 3.3x10⁻⁴
 - Trigger counters
 - Timing hodoscopes: BH1, BH2
- Key issue in E10 experiment
 - Handling of high rate pion beams on
 - Typical beam rate: 12M 14M/spill

Setup of E10

- SKS spectrometer
 - 0.9 GeV/c produced K⁺
 - Tracking of scattered particles ⁴

SDC3

for calibrations

Setup of E10

• Targets (~3.5 g/cm²)

- ⁶Li for production runs, C and (CH₂)_n for calibrations

<u>Calibration runs with Σ^- and Σ^+ </u>

- Momentum calibrations of beam π^- and scattered K⁺
 - Momentum adjusted: Σ^- and Σ^+ come to known mass
 - Cross section was compared with existing data

Systematic error and resolution

- Beam through runs at 0.8, 0.9, 1.0 and 1.2 GeV/c
 - Systematic error of the beam momentum was 1.34 MeV/c
- Missing mass resolution was estimated from ¹²_ΛC

Results of production runs

- Missing-mass spectrum of the ⁶Li(π^- ,K⁺)X reaction
 - Systematic error of missing-mass 1.26 MeV/c²
 - Tentative angle cut 2-14 degrees is applied
 - Same as KEK-E521 and SKS acceptance is well known

Results of production runs

• Estimation of cross section upper-limit

 $\frac{3 \text{ events}}{^{4}\Lambda}$ H+2n threshold

Background due to miss-PID 0.39 ± 0.05 event/(MeV/c²)

Expected number of background is ~2 events

1 event ~ 0.18 nb/sr

• $d\sigma_{2^{\circ}-14^{\circ}}/d\Omega < 1.2 \text{ nb/sr}$ (90% CL)

E10 Summary

- Phase-1 beamtime of J-PARC E10 experiment
 - Run at high beam intensity as proposed: 10M-12M/spill
 - 1.4 T pion beams on target (about 50% of proposal)
- All calibration runs were done (Σ^{\pm} and ${}^{12}_{\Lambda}$ C) – Systematic error of missing-mass scale is 1.26 MeV/c²
 - Missing-mass resolution is 3.2 MeV/c² (FWHM)
- Analysis of ${}^{6}_{\Lambda}$ H production data was done
 - No clear peak was observed in the threshold region
 - Cross section upper-limit is 1.2 nb/sr (90% C.L.)
 - Studies are still in progress to improve the sensitivity

E27 experiment Search for light kaonic nuclei "K⁻pp" via the d(π⁺, K⁺) reaction at J-PARC.

Yudai Ichikawa Kyoto University / JAEA 2014/2/15 SNP school 2014

Introduction

- **KN** interaction
 - Known to be strongly attractive from K⁻p atomic X-ray shift and low energy K⁻ p scattering data
 - Λ (1405) can be interpreted as a K⁻p bound state
- K⁻pp bound state KNN(Total charge; +1, I=1/2)
 - The simplest kaonic nucleus
 - Theoretical prediction of B.E. and Γ depend on the KN interaction and theoretical framework.
- **K**N interaction in matter
 - Clarify possible existence of K⁻ condensation in neutron stars

Calculated $K^- pp$ binding energies B and widths Γ (in MeV).

A. Gal / Nuclear Physics A 914 (2013) 270-279

	Chiral, energy dependent			Non-chiral, static calculations			
	var. [7]	var. [8]	Fad. [9]	var. [10]	Fad [11]	Fad [12]	var. [13]
В	16	17-23	9–16	48	50-70	60-95	40-80
Г	41	40-70	34-46	61	90-110	45-80	40-85

[7] N. Barnea, A. Gal, E.Z. Liverts, Phys. Lett. B 712 (2012) 132.

[8] A. Doté, T. Hyodo, W. Weise, Nucl. Phys. A 804 (2008) 197;

A. Doté, T. Hyodo, W. Weise, Phys. Rev. C 79 (2009) 014003.

[9] Y. Ikeda, H. Kamano, T. Sato, Prog. Theor. Phys. 124 (2010) 533.

[10] T. Yamazaki, Y. Akaishi, Phys. Lett. B 535 (2002) 70.

[11] N.V. Shevchenko, A. Gal, J. Mareš, Phys. Rev. Lett. 98 (2007) 082301;

N.V. Shevchenko, A. Gal, J. Mareš, J. Revai, Phys. Rev. C 76 (2007) 044004.

[12] Y. Ikeda, T. Sato, Phys. Rev. C 76 (2007) 035203;
 Y. Ikeda, T. Sato, Phys. Rev. C 79 (2009) 035201.

[13] S. Wycech, A.M. Green, Phys. Rev. C 79 (2009) 014001.

Previous experiments for K⁻pp

	FINUDA	DISTO		
reaction	Stopped K ⁻ absorption on ^{6, 7} Li+ ¹² C	p + p @ Tp=2.85GeV		
method	Invariant mass of back-to-back Ap pairs	$p+p \rightarrow X+K^+$ (missing mass) $X \rightarrow \Lambda+p$ (invariant mass)		
B.E	$115^{+6}_{-5}(stat)^{+3}_{-4}(syst)$ MeV	$105 \pm 5 \text{ MeV}$		
Width	$67^{+14}_{-11}(stat)^{+2}_{-3}(syst)$ MeV	118 ± 8 MeV		
-B _A 30 25 25 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 25 20 20 25 20 20 25 20 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20	M.Agnello <i>et al.</i> , PRL 94, 212303 (2005) $K^++p+p^22.37GeV/c^2$ (MeV) (9) (T.Yamazaki <i>et al.</i> , PRL 104, 132502 (2010) B (K pp) [GeV] 0.2 0.1 -0.1 <i>large-angle proton</i> M = 2.267 (2) M = 2.267		

J-PARC E27 experiment

d(π^+ , K⁺)X reaction (P_{π} = 1.7GeV/c)

K-pp is produced via a Λ(1405) doorway. π^+ + n $\rightarrow \Lambda(1405)$ + K⁺ $\Lambda(1405) + p \rightarrow K^{-}pp$ $(\rightarrow$ quasi free Λ^*) Missing mass π^+ 1 % n K⁻pp р

Y.Akaishi, T.Yamazaki, Phys. Rev. C 76 045201 (2007)

<u>d(π⁺, K⁺)X inclusive spectrum</u>

Black: Simulation for the B.G. (quasi-free hyperon production) Red: Data

Quasi-free B.G.

 Λ, Σ
 Y* : Σ (1385)^{+/0}, Λ (1405) Λπ, Σπ
 There are a lot of B.G.
 →It is difficult to identify the K⁻pp bound state from inclusive spectrum.

→Coincidence analysis to suppress these B.G.

ΣΝ-ΛΝ Cusp

Excess is observed around 2.13 GeV/c².

Peak shift

Y* peak shift to lower mass side by $\sim 30 \text{ MeV/c}^2$.

Range Couner Array for B.G. suppression

Coincidence measurement!!

RCA for B.G. suppression

- 6units, 5 layers (1+2+2+5+2cm) of plastic scintillator.
- TOF: 50cm, θ_{xz} :39° -122° (L+R)
 - \rightarrow We suppress the B.G. by tagging a proton at RC-2, 3.
 - →More strongly suppress by tagging two protons.

Mom vs θ_{x_7} of proton

RC-3L

RC-2L

500

RC-1/L, **R**

600

700 800

Mom of proton[MeV/c]

-> p π⁻ p

160

140

120

100

80

60

40

20

900 1000

1 proton coincidence analysis

- RC-2L, R are almost free from QF backgrounds.
- Excess due to ΣN-ΛN cusp is clearly observed ~ 2.13GeV/c².
- Broad Enhancement is observed around 2.3 GeV/c².
 - There is a proton emitting source involving two nucleons (non quasi-free) in a high emission probability.
 - A possible explanation of the observed structure is K⁻pp.

RC-2L, R

1 proton coincidence analysis

- RC-2L, R are almost free from QF backgrounds.
- Excess due to ΣN-ΛN cusp is clearly observed ~ 2.13GeV/c².
- Broad Enhancement is observed around 2.3 GeV/c².
 - There is a proton emitting source involving two nucleons

2-proton coincidence analysis

- The 2-proton coincidence spectra show the same tendency as the 1-proton coincidence spectrum.
- We set 3 regions in the missing mass spectrum.
 - ①MM<2.22GeV, ②2.22<MM<2.35GeV, ③MM>2.35GeV Cusp region Enhance region Y* region

The final state of X (2p coin events)

Hyperon masses are reconstructed by 2p coin analysis.

E27 Summary and Future

<Inclusive analysis>

- We have obtained $d(\pi^+, K^+)$ at 1.7 GeV/c for the first time.
- In the Λ and Σ region, observed spectrum is almost reproduced by the simulation which is based on the quasi-free processes.
- ΣN-ΛN cusp structure and peak shift of Y* are observed.

<Coincidence analysis>

- In proton coincidence, the Σ N- Λ N cusp structure and an broad enhancement around 2.3 GeV/c² are clearly observed.
 - \rightarrow A possible explanation of the observed structure is K⁻pp.
 - \rightarrow The detailed studies on detection efficiencies are in progress.
- Hyperon masses are reconstructed from 2 protons analysis .

 \rightarrow The final states are determined.

<Future work>

• Apply the acceptance correction for protons which detected by RCA.

A Future Plan of the Hadron Hall

