

Prospect of A=4 hypernuclear spectoscopy with Hyperball-J

Dept. of Phys. Tohoku Univ. Mifuyu Ukai for the E13 collaboration

Contents

- Outline of J-PARC E13 experiment
- Physics programs for ${}^{4}\text{He}(K^{-},\pi^{-})$ reaction
 - ${}^{4}_{\Lambda}$ He γ -ray spectroscopy
 - $-{}^{3}{}_{\Lambda}$ H γ -ray spectroscopy
 - $-\frac{4}{\Sigma}$ He reaction spectroscopy
- Summery

YN interaction and Hypernuclear structure

Accumulating Hypernuclear data is essential

J-PARC E13

Precise measurement of light hypernuclei by γ -ray spectroscopy

 ${}^{4}_{\Lambda}$ He and ${}^{19}_{\Lambda}$ F data will be taken (E13-1st Phase) soon after beam coming back

In this talk, Physics programs for ${}^{4}_{\Lambda}$ He will be presented

E13 spectrometers overview

E13 spectrometers performances

Both γ -ray spectroscopy and reaction spectroscopy available

Acceptance of SksMinus and Missing mass spectrum

SksMinus covers wide momentum($1 \sim 2 \text{ GeV/c}$) and reaction angles ($\sim 20 \text{ deg}$)

Acceptance of SksMinus and Missing mass spectrum

Missing mass spectrum covers from Λ bound region to Σ -Quasi free region

Physics programs

Cartoon of missing mass spectrum image for ${}^{4}\text{He}(K^{-},\pi^{-})$ (K-decays subtracted)

γ-ray spectoscopy of ${}^{4}_{\Lambda}$ He M1 (1⁺→0⁺) transition

1.15 MeV γ-ray was observed by NaI (50 keV FWHM) in stopped K absorption on Li target (PLB 83B(1972)252)

=> Very poor statistics

High statistic and precise measurement is required Main motivation for E13 ⁴He target RUN Optimization of experimental conditions

Experimental condition and Expected yield

Production of ${}^{3}{}_{\Lambda}$ H via proton emission

³He+
$$\Lambda$$
..... 2.0

$$\underbrace{1^{+}}_{4} 1.0$$
⁴He Ex MeV

Highly excited states of hypernuclei decay by particle emission

Possibly, partly decay to ${}^{3}{}_{\Lambda}$ H via proton emission

Only np T=0 system bound

1+

Observed to be weakly bound $B_{\Lambda} = 0.13(5)$ MeV

Juric et al., NPB52(1973)1 and ref. there in

If ${}^{3}_{\Lambda}$ n is bound, ${}^{3}_{\Lambda}$ H T=1 state is possibly under the n+p+ Λ threshold

⁴_{Σ}He bound state by ⁴He(K⁻, π ⁻) reaction

 Σ production by (K⁻, π ⁻) reaction

Momentum transfer for ${}^4\Sigma$ He

For pK=1.5 GeV/c, momentum transfer range covers 200 ~ 400 MeV/c Population of both $\Delta L=0 s_{\Sigma} 0^+$ state and $\Delta L=1 p_{\Sigma} 1^-$ state are predicted

by T. Harada, NPA672(2000)181 and priv. comm. (2012)

s_{Σ} (0⁺) and p_{Σ} (1⁻) states in ${}^{4}_{\Sigma}$ He

(Stopped K⁻, π ⁻) Momentum transfer q= 175 MeV/c

Larger momentum transfer For pK= 1.5 GeV/c q=200 - 400 MeV/c 1^{-} state can be much populate

Very rough estimation for 1.5 GeV/c Sticking probability for $\Delta L=0,1$ reaction (Ann. Phys. 141 138)

0+ state; 6 k events 1- state; 12 k events

for 1 week beam time

Problem

Large contribution from Σ -quasi free

Hyperball-J as Decay counters tagging for $\Sigma N \rightarrow \Lambda N$ conversion

Target is surrounding by Hyperball-J counters (PWO and Ge detectors)

target

IF 1⁻ state hidden in Large Quasi-free event

- Angular dependence change momentum transfer 200 ~ 400 MeV/c
- Tagging decay particles Forward QF Σ decays Isotropical 0⁺,1⁻ state ΣN -> ΛN conversion

Use PWO counters (decay p and π detection) Setting ADC range ~ 200 MeV

Simulation to be done

Summery

- We will perform spectroscopy via the ⁴He(K⁻,π⁻) reaction in E13 experiment.
- Thanks to large acceptance of SksMinus, we can get missing mass spectrum from Λ -bound to Σ -QF region
- Physics programs
 - ${}^4_\Lambda$ He γ -ray spectroscopy
 - $-{}^{3}{}_{\Lambda}$ H γ -ray spectrosopy
 - ${}^{4}{}_{\Sigma}$ He reaction spectroscopy