### Study of hyperon potentials from 2+1 lattice QCD H. Nemura<sup>1</sup>,

for HAL QCD Collaboration S. Aoki<sup>2</sup>, B. Charron<sup>3</sup>, T. Doi<sup>4</sup>, F. Etminan<sup>1</sup>, T. Hatsuda<sup>4</sup>, Y. Ikeda<sup>4</sup>, T. Inoue<sup>5</sup>, N. Ishii<sup>1</sup>, K. Murano<sup>2</sup>, K. Sasaki<sup>1</sup>, and M. Yamada<sup>1</sup>,



<sup>1</sup>Center for Computational Science, University of Tsukuba, Japan
 <sup>2</sup>Yukawa Institute for Theoretical Physics, Kyoto University, Japan
 <sup>3</sup>Department of Physics, University of Tokyo, Japan
 <sup>4</sup>Theoretical Research Division, Nishina Center RIKEN, Japan
 <sup>5</sup>College of Bioresouce Science, Nihon University, Japan
 <sup>6</sup>Strangeness Nuclear Physics, Nishina Center RIKEN, Japan





### Comparison between d=p+n and core+Y

| a<br>p<br>p          | S<br>NO<br>n                                                          | <sup>3</sup> D<br>p n                                      |                                          | L=0<br>///<br>α Λ                        | L=2<br>Δ Σ                   |
|----------------------|-----------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------|
|                      | $\langle T_S \rangle$                                                 | $\langle T_D \rangle$                                      | $\langle V_{NN}(\text{central}) \rangle$ | $\langle V_{NN}(\text{tensor}) \rangle$  | $\langle V_{NN}(LS) \rangle$ |
|                      | (MeV)                                                                 | (MeV)                                                      | (Me                                      | eV) (Me                                  | eV) (MeV)                    |
| AV8                  | 8.57                                                                  | 11.31                                                      | -4.46                                    | -16.64                                   | -1.02                        |
| G3RS                 | 10.84                                                                 | 5.64                                                       | -7.29                                    | -11.46                                   | 0.00                         |
|                      | $\langle T_{Y-c} \rangle_{\Lambda} \langle T_{Y-c} \rangle_{\Lambda}$ | $-c\rangle_{\Sigma} + \Delta H_{C}\rangle \langle V_{YN}($ | のこり)〉                                    | $2\langle V_{N-X}(\text{tensor})\rangle$ |                              |
| $^{5}_{\Lambda}$ He  | 9.11                                                                  | 3.88+4.68                                                  | -0.86                                    | -19.51                                   |                              |
| ${}^4_{\Lambda} H^*$ | 5.30                                                                  | 2.43+2.02                                                  | 0.01                                     | -10.67                                   |                              |
| ${}^4_{\Lambda}$ H   | 7.12                                                                  | 2.94+2.16                                                  | -5.05                                    | -9.22                                    |                              |

## Lattice QCD calculation

### Outline

- Introduction
- Formulation --- potential (central + tensor)
  Numerical results:
  - inumerical results.
    - NAforce  $(V_{\rm C} + V_{\rm T})$
    - $\otimes N\Sigma (I=3/2)$  force  $(V_{C} + V_{T})$
- Recent work on lattice QCD
- Effective hadron block algorithm for the 4pt correlation function (NBS wave function)
- Extention to various baryon-baryon channels
- Hybrid parallel computation by MPI and OpenMP
  Summary

### **Introduction:**

Study of hyperon-nucleon (YN) and hyperonhyperon (YY) interactions is one of the important subjects in the nuclear physics.

Structure of the neutron-star core,

Hyperon mixing, softning of FOS inevitable strong repulsive Strange quark star force, HON STAT WITH <sup>®</sup> H-dibaryon problem, n, p, e, μ To be, or not to be Outer (A+e) u, d, s, e & Inner (A+n+e) Crust The project at J-PARC: u, d, s  $\pi^0, \pi^-, K^- \mid \Sigma, \Lambda, \Xi$ Explore the multistrar Neutronstatwith n, p, e, μ However, the phenomen n, p, e, *µ* Y

 $\mathcal{N}$ 

R~10 km

interactions has large u contrast to the nice des potential.

Formulation Lattice QCD simulation  $L = -\frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} + \bar{q} \gamma^{\mu} (i \partial_{\mu} - g t^{a} A^{a}_{\mu}) q - m \bar{q} q$  $\langle O(\overline{q}, q, U) \rangle = \int dU d \overline{q} dq e^{-S(\overline{q}, q, U)} O(\overline{q}, q, U)$  $= \int dU \det D(U) e^{-S_{U}(U)} O(D^{-1}(U))$  $= \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} O(D^{-1}(U_i))$ р  $\rightarrow \langle \mathbf{t} (t) \mathbf{t} (t_{0}) \rangle$ 

Formulation Lattice QCD simulation  $L = -\frac{1}{\Lambda} G^{a}_{\mu\nu} G^{a\mu\nu} + \bar{q} \gamma^{\mu} (i \partial_{\mu} - g t^{a} A^{a}_{\mu}) q - m \bar{q} q$  $\langle O(\bar{q}, q, U) \rangle = \int dU \ d\bar{q} \ dq \ e^{-S(\bar{q}, q, U)} O(\bar{q}, q, U)$  $= \int dU \ det \ D(U) e^{-S_U(U)} O(D^{-1}(U))$  $= \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} O(D^{-1}(U_i))$  $\rightarrow \langle \mathbf{t} (\mathbf{t}) \mathbf{t} (\mathbf{t}) (\mathbf{t}) \langle \mathbf{t} \rangle \rangle$  $p\Lambda$ 

Formulation i) basic procedure: asymptotic region --> phase shift ii) advanced (HAL's) procedure: interacting region --> potential





Luscher, NPB354, 531 (1991). Aoki, et al., PRD71, 094504 (2005).



**HAL formulation** ii) advanced procedure: make better use of the lattice output ! (wave function) interacting region --> potential

Ishii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., arXiv:0805.2462[hep-ph].

#### NOTE:

> Potential is not a direct experimental observable.

> Potential is a useful tool to give (and to reproduce) the physical quantities. (e.g., phase shift)

**HAL formulation** ii) advanced procedure: make better use of the lattice output ! (wave function) interacting region --> potential

> Ishii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., arXiv:0805.2462[hep-ph].

# > Phase shift > Nuclear many-body problems

## Numerical results

## Full QCD calculations by using N<sub>F</sub>=2+1 PACS-CS gauge configurations:

S. Aoki, et al., (PACS-CS Collaboration), PRD79, 034503 (2009), arXiv:0807.1661 [hep-lat].

Solution  $32^3 \times 64$  lattice

O(a) improved Wilson quark action

1/a = 2.17 GeV (a = 0.0907 fm)

| $(\kappa_{ud})_{N_{\rm conf}}$                                                            | $m_{\pi}$ | m <sub>ρ</sub> | $m_K$                   | $m_{K^*}$ | $m_N$   | $m_{\Lambda}$ | $m_{\Sigma}$ | $m_{\Xi}$ |  |
|-------------------------------------------------------------------------------------------|-----------|----------------|-------------------------|-----------|---------|---------------|--------------|-----------|--|
| 2+1 flavor QCD by PACS-CS with $\kappa_s = 0.13640$ @ present calc (Dirichlet BC along T) |           |                |                         |           |         |               |              |           |  |
| $(0.13700)_{609}$                                                                         | 700.0(4)  | 1108(3)        | 785.8(3)                | 1159(2)   | 1573(4) | 1632(4)       | 1650(5)      | 1700(4)   |  |
| <del>(0.19727)<sub>481</sub></del>                                                        | 567.9(6)  | 1000(1)        | 723.7(7)                | 1001(3)   | 1096(6) | 1121(1)       | 1519(5)      | 1599(1)   |  |
| (0.13754)<br>Exp.                                                                         | 135       | 770            | 639.7(8)<br><b>49</b> 4 | 892       | 940     | 1116          | 1190         | 1320      |  |



## **NN** potential

V<sub>(</sub>(NN; 1SO)



- $\{27\} + \{8s\}$
- Similar to NN (1S0)
- Sizable contribution from time-derivative part

V<sub>(</sub>(N; 3S1-3D1)



•  $\{10^*\}+\{8a\}$ 

• Sizable attractive contribution from time-derivative part

 $V_{T}(\Lambda N; 3S1-3D1)$ 



- Weaker tensor force than NN
- Small contribution from time-derivative part

## **ΣN(I=3/2)** potential

## $V_{c}(\Sigma N(I=3/2); 1SO)$



- {27}
- Similar to NN (1S0) (as well as Lambda-N (1S0))
- Sizable contribution from time-derivative part

## $V_{c}(\Sigma N(I=3/2); 3S1-3D1)$



- {10}
- **Repulsive potential (consistent with quark model)**
- sizable repulsive contribution from time-derivative part

## $V_{T}(\Sigma N(I=3/2); 3S1-3D1)$



- Weak tensor force
- Small contribution from time-derivative part

### Scattering phase shifts

Phase shift

Proton-Lambda scattering (preliminary)

Parametrized potential



Effective block algorithm for various baryon-baron calculations



$$p_{\alpha}(x) = \varepsilon(c_1, c_2, c_3)(C\gamma_5)(\alpha_1, \alpha_2)\delta(\alpha, \alpha_3)u(\xi_1)d(\xi_2)u(\xi_3), \qquad (\xi_i = x_i\alpha_i c_i) \\ = \varepsilon(1, 2, 3)(C\gamma_5)(1, 2)\delta(\alpha, 3)u(1)d(2)u(3).$$
(11)

$$\sum_{\vec{X}} \left\langle 0 \left| p_{\alpha}(\vec{X} + \vec{r}, t) \Lambda_{\beta}(\vec{X}, t) \overline{\mathcal{J}_{p_{\alpha'}\Lambda_{\beta'}}(t_0)} \right| 0 \right\rangle$$

$$= \sum_{\vec{X}} \frac{1}{6} \varepsilon(1, 4, 2) \varepsilon(5, 6, 3) \varepsilon(1', 4', 2') \varepsilon(5', 6', 3') (C\gamma_5)(1, 4) \delta(\alpha, 2) (C\gamma_5)(1', 4') \delta(\alpha', 2') \times \{(C\gamma_5)(5, 6) \delta(\beta, 3) + (C\gamma_5)(6, 3) \delta(\beta, 5) - 2(C\gamma_5)(3, 5) \delta(\beta, 6)\} \times \{(C\gamma_5)(5', 6') \delta(\beta', 3') + (C\gamma_5)(6', 3') \delta(\beta', 5') - 2(C\gamma_5)(3', 5') \delta(\beta', 6')\} \times \langle u(1) d(4) u(2) d(5) s(6) u(3) \bar{u}(3') \bar{s}(6') \bar{d}(5') \bar{u}(2') \bar{d}(4') \bar{u}(1') \rangle.$$

$$\sum_{c_{1, \dots, c_{6}}} \sum_{\alpha_{1, \dots, \alpha_{6}}} \sum_{c_{1, ', \dots, c_{6}}} \sum_{\alpha_{1, ', \dots, \alpha_{6}}} \sum_{c_{1, ', \dots, c_{6}}} \sum_{c_{1$$

$$(N_{c}!N_{\alpha})^{2B} \times N_{u}!N_{d}!N_{s}!$$



Performed these manipulations based on the diagrammatic classification, most of the summations can be carried out prior to evaluating the FFT so that the number of iterations significantly reduces; The numbers of iteration are  $\{1, 9, 144, 144, 36, 36\}$  for the baryon blocks  $\{([p_{\alpha}^{(i)}] \times [\Lambda_{\beta}^{(i)}]); i = 1, \dots, 6\}$ . Therefore only 370 iterations should be explicitly performed to obtain the four-point correlation function of the  $p\Lambda$  system when we take the operator  $\overline{X}_u$  in  $\overline{\Lambda}_{\beta'}$  in the source. For the sake of completeness, the total number of iterations does not change when we take the operator  $\overline{X}_s$  in  $\overline{\Lambda}_{\beta'}$  in the source whereas the numbers of iteration are  $\{1, 36, 36, 144, 144, 36\}$  when we consider the contribution from the operator  $\overline{X}_d$  in  $\overline{\Lambda}_{\beta'}$  in the source which slightly differ from the former cases and the total number of iterations is 397.

|   | Effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tive                                                                                                                                                                                                                | block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | algor                                                                                                                                                                                                                                                                                                                                                                    | ithm                                                                                                                                                                                                                                                                                                               | to ca                                                                                                                                                                                                                                                                                                                                                                                  | Icula                                                                                                                                                                                                                                                                                                                                                                 | te the                                                                       |       |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------|
|   | (pnpn), 52 channels of 4pt correlator                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |       |
|   | $\begin{array}{ll} \langle p\Lambda\overline{p\Lambda}\rangle, & \langle p\Lambda\overline{\Sigma^{+}n}\rangle, & \langle p\Lambda\overline{\Sigma^{0}p}\rangle, \\ \langle \Sigma^{+}n\overline{p\Lambda}\rangle, & \langle \Sigma^{+}n\overline{\Sigma^{+}n}\rangle, & \langle \Sigma^{+}n\overline{\Sigma^{0}p}\rangle, \\ \langle \Sigma^{0}p\overline{p\Lambda}\rangle, & \langle \Sigma^{0}p\overline{\Sigma^{+}n}\rangle, & \langle \Sigma^{0}p\overline{\Sigma^{0}p}\rangle, \end{array}$ |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |       |
|   | $(\Lambda\Lambda\overline{\Lambda})$<br>$(p\Xi^{-}\overline{\Lambda})$<br>$(n\Xi^{0}\overline{\Lambda})$<br>$(\Sigma^{+}\Sigma^{-})$<br>$(\Sigma^{0}\Sigma^{0}\overline{\Lambda})$                                                                                                                                                                                                                                                                                                                | $egin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                  | $\begin{array}{ll} \overline{\Xi^{-}}\rangle, & \langle \Lambda A \\ \overline{p\Xi^{-}}\rangle, & \langle p\Xi \\ \overline{p\Xi^{-}}\rangle, & \langle n\Xi \\ \overline{p\Xi^{-}}\rangle, & \langle \Sigma^{+} \\ \overline{p\Xi^{-}}\rangle, & \langle \Sigma^{0} \\ \overline{p\Xi^{-}}\rangle, & \langle \Sigma^{0} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{l} \sqrt{n\Xi^{0}} \rangle, & \langle \Lambda \\ \overline{n\Xi^{0}} \rangle, & \langle p \rangle \\ \sqrt{n\Xi^{0}} \rangle, & \langle n \rangle \\ \Sigma^{-} \overline{n\Xi^{0}} \rangle, & \langle \Sigma \\ \Sigma^{0} \overline{n\Xi^{0}} \rangle, & \langle \Sigma \\ \overline{\Lambda n\Xi^{0}} \rangle, & \langle \Sigma \rangle \end{array} $ | $\begin{array}{l} \Lambda\overline{\Sigma^{+}\Sigma^{-}}),\\ \Xi^{-}\overline{\Sigma^{+}\Sigma^{-}}),\\ \Xi^{0}\overline{\Sigma^{+}\Sigma^{-}}),\\ ^{+}\Sigma^{-}\overline{\Sigma^{+}\Sigma^{-}}),\\ ^{0}\Sigma^{0}\overline{\Sigma^{+}\Sigma^{-}}),\\ ^{0}\Lambda\overline{\Sigma^{+}\Sigma^{-}}),\\ \end{array}$ | $ \begin{array}{l} \langle \Lambda \Lambda \overline{\Sigma^{0} \Sigma^{0}} \rangle, \\ \langle p \Xi^{-} \overline{\Sigma^{0} \Sigma^{0}} \rangle, \\ \langle n \Xi^{0} \overline{\Sigma^{0} \Sigma^{0}} \rangle, \\ \langle \Sigma^{+} \Sigma^{-} \overline{\Sigma^{0} \Sigma^{0}} \rangle, \\ \langle \Sigma^{0} \Sigma^{0} \overline{\Sigma^{0} \Sigma^{0}} \rangle, \end{array} $ | $\begin{array}{ll} & (p \Sigma^{-} \overline{\Sigma^{0}} \overline{\Lambda} \\ & (n \Sigma^{0} \overline{\Sigma^{0}} \overline{\Lambda} \\ \overline{0}), & (\Sigma^{+} \Sigma^{-} \overline{\Sigma^{0}} \\ & (\Sigma^{0} \Lambda \overline{\Sigma^{0}} \overline{\Lambda} \\ & (\Sigma^{0} \Lambda \overline{\Sigma^{0}} \overline{\Lambda} \end{array} \end{array}$ | $\bar{\Lambda}$ ),<br>$\frac{\rangle}{\Lambda}$ , (4.3)<br>$\bar{\Lambda}$ , |       |
|   | $(\Sigma^{-}\Lambda\overline{\Sigma})$<br>$(\Sigma^{-}\Sigma^{0}\overline{\Sigma})$<br>$(\Sigma^{0}\Sigma^{-}\overline{\Sigma})$                                                                                                                                                                                                                                                                                                                                                                  | $\overline{\Sigma^{-}\Lambda}$ ), $\langle \overline{\Sigma^{-}\Lambda} \rangle$ , $\langle \Sigma^{-}\overline{\Sigma} \rangle$<br>$\overline{\Sigma^{-}\Lambda}$ ), $\langle \Sigma^{0}\overline{\Sigma} \rangle$ | $\begin{array}{l} & \overline{\Sigma^{-}\Xi^{0}}  angle, \ \langle \Xi^{0}\overline{\Sigma^{-}\Xi^{0}}  angle, \ \langle \Sigma^{-}\overline{\Sigma^{0}}  angle, \ \langle \Sigma^{-}\overline{\Sigma^{-}\Xi^{0}}  angle, \ \langle \Xi^{-}\overline{\Sigma^{-}\Xi^{0}}  angle, \ \langle \Xi$ | $\Sigma^{-}\Lambda\Sigma^{0}\Sigma^{-}\Sigma^{0}\Sigma^{-}\rangle,$<br>$\Sigma^{0}\Sigma^{0}\Sigma^{0}\Sigma^{-}\rangle,$<br>$\Sigma^{0}\Sigma^{-}\overline{\Sigma^{0}\Sigma^{-}}\rangle,$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       | (4.4)                                                                        |       |
|   | $(\Xi^-\Xi^0\overline{\Xi})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\overline{\Sigma^{-}\overline{\Sigma^{0}}}$ ).                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       | (4.5)                                                                        |       |
| * | Elapse tir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nes to                                                                                                                                                                                                              | calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | te the $\exists$                                                                                                                                                                                                                                                                                                                                                         | 52 mat                                                                                                                                                                                                                                                                                                             | rix corr                                                                                                                                                                                                                                                                                                                                                                               | elators                                                                                                                                                                                                                                                                                                                                                               | (MPI+Op                                                                      | enMP) |
| * | [tasks_per_node] x [OMP_NUM_THREADS]                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |       |
| 大 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64x1                                                                                                                                                                                                                | 32x2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16x4                                                                                                                                                                                                                                                                                                                                                                     | 8x4                                                                                                                                                                                                                                                                                                                | 4x8                                                                                                                                                                                                                                                                                                                                                                                    | 2x16                                                                                                                                                                                                                                                                                                                                                                  | 1x32                                                                         |       |
| * | Step-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0:14                                                                                                                                                                                                                | 0:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0:09                                                                                                                                                                                                                                                                                                                                                                     | 0:09                                                                                                                                                                                                                                                                                                               | 0:07                                                                                                                                                                                                                                                                                                                                                                                   | 0:06                                                                                                                                                                                                                                                                                                                                                                  | 0:06                                                                         |       |
| * | Step-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0:10                                                                                                                                                                                                                | 0:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0:12                                                                                                                                                                                                                                                                                                                                                                     | 0:12                                                                                                                                                                                                                                                                                                               | 0:12                                                                                                                                                                                                                                                                                                                                                                                   | 0:13                                                                                                                                                                                                                                                                                                                                                                  | 0:14                                                                         |       |

## (1) Lattice QCD calculation for hyperon potentials toward the physical point calculation. Lambda-N, Sigma-N: central, tensor

(2) Effective hadron block algorithm for the various baron-baryon interaction

A hybrid parallel C++ program is implemented by using MPI and OpenMP.

Reasonable performances at various hybrid parallel execution on the supercomputer (BlueGene/Q)