J-PARC E07

Systematic study of double-strangeness nuclei with hybrid-emulsion method

K.Imai^a, K.Nakazawa^b, H.Tamura^c, S.Ahmad^d, J.K.Ahn^e, B.Bassalleck^f, R.E.Chrien^g, D.H.Davis^h, H.Ekawaⁱ, Y.Y.Fu^j, S.Fukunaga^k, Y.Han^f, R.Hasan^d, S.Hasegawa^a, E.Hayataⁱ, M.Hiroseⁱ, K.Hoshino^b, K.Hosomi^a, S.Hwang^a, M.leiri^l, K.Ito^m, K.Itonaga^b, T.Kawai^m, J.H.Kimⁿ, S.Kinbara^b, R.Kiuchi^o, T.Koike^c, H.S.Lee^e, J.Y.Lee^o, C.Li^j, Z.M.Li^j, A.Mishina^b, K.Miwa^c, H.Noumi^p, S.Ogawa^k, S.Y.Ryu^e, H.Sako^a, S.Sato^a, T.Sato^m, M.Sekimoto^l, H.Shibuya^k, K.Shirotori^p, M.K.Soe^q, H.Sugimura^a, M.Sumihama^b, H.Takahashi^l, T.Takahashi^l, K.Tanida^o, K.T.Tint^r, A.Tokiyasu^p, D.Tovee^h, M.Ukai^c, K.Umehara^b, T.Watabe^m, T.Yamamoto^c, N.Yasuda^s, C.S.Yoonⁿ, J.Yoshida^b, T.Yoshida^s, D.H.Zhang^t, J.Zhouⁱ,

S.H.Zhoui, and L.H.Zhui

^aJapan Atomic Energy Agency (JAEA), Japan, ^bPhysics Department, Gifu University, Japan, Department of Physics, Tohoku University, Japan, ^dAligarh Muslim University, India, *Pusan National University, Korea, ^fDepartment of Physics and Astronomy, University of NewMexico, USA, ^gBrookhaven National Laboratory, USA, ^hUniversity Colledge of London, UK, Department of Physics, Kyoto University, Japan, ^jCIAE, China Institute of Atomic Energy (CIAE), China, ^kDepartment of Physics, Toho University, Japan, ¹KEK, High Energy Accelerator Research Organization, Japan, ^mDepartment of Physics, Nagoya University, Japan, ⁿ Gyeongsang Nat'l University, Korea, "Seoul National University, Korea, ^pResearch Center for Nuclear Physics (RCNP), Japan, ⁹Mandalay University, Myanmar, 'Adanabon University, Myanmar, ^sUniversity of Fukui, Japan, ¹Shanxi Normal University, China.

YOSHIDA Junya on behalf of E07 collaboration.

to understand Baryon-Baryon interaction

S=-2; double strangeness system by introducing 2 strangeness into nucleus via Ξ -

Only 3 candidate events in the 20th century.

M.Danysz et al., PRL.11(1963)29; R.H.Dalitz et al., Proc. R.S.Lond.A436(1989)1 D.J.Prowse, PRL.17(1966)782 S.Aoki et al., NP. A828 (2009) 191-232

2 lambdas as ground state in nucleus

-> 7 more events in KEK E373.

J.K. Ahn et al. PRC 88 (2013) 014003

 $B\Lambda\Lambda$ = 6.91 +- 0.16 MeV ABAA = 0.67 + 0.17 MeV(where $B\Xi$ - = 0.13MeV)

3

S=-2 System, so far (2); Ξ -N interaction

Twin Λ hypernuclei from Ξ - capture **KEK E373** A.Ichikawa et. al, Phys.Lett.B500(2001)37 $\Xi^{-}+{}^{14}N->{}^{5}_{\Lambda}He+{}^{5}_{\Lambda}He+{}^{4}He+n$ $B_{\Xi}=-2.6\pm1.2$ MeV

Missing mass spectroscopy of ${}^{12}C(K^-,K^+){}^{12}_{\Xi}Be$

Spectrum shape suggests attractive potential (-14MeV) for Ξ.KEK E224T.Fukuda et. al, PRC58(1998)1306BNL AGS E885P.Khaustov et. al, PRC61(2000)054603

nuclear emulsion; photographic emulsion visualizing tracks of particles

One of the most powerful method for the detection of Double Lambda Hypernuclei

Readout under optical microscope

Microscopic view x20 objective Field of view: 650*850 microns

Motivation of J-PARC E07

Emulsion volume: 70L -> 153L K- purity: ~20% -> ~85%(designed value)

- Detection of double hypernuclei by new hybrid method
 - 10 times' statistics of $E_{2}^{3}73 \Leftrightarrow 10^{4} \Xi^{-}$ stop

10² double hypernuclei

~10 identified nuclides

- Nuclear (A) dependence of $\Lambda\Lambda$ binding energy
- $\Xi\text{-}\mathrm{N}$ interaction via twin Λ hypernclei
- H-dibaryon ?
- ◆ X-rays from Ξ-atom (Ag/Br)
 - Ξ -Nucleus potential in the surface region

 \Leftrightarrow Spectroscopy of Ξ -hypernuclei

*Experimental concept of E07 (based on KEK E373) *Current status of detectors

SSD

Sensor (Hamamatsu)

- \bullet single-side 50 μm pitch
- \bullet N-bulk with 320 μm thickness
- 90 x 90 mm²

Configuration

- XYXY stacks at up- and downstream of the emulsion
- 77x77 mm² eff. area
- 1536/1792 ch./layer R.O.
- APV front-end for DAQ

$\Delta X~{\sim}30 \mu m \, \Delta X' \,{\sim}10 mrad$

Current status: Waiting for wire bonding with SSD sensor and pitch-adopter. Full system will be ready in June, 2014.

Emulsion mover

Emulsion stack records all beam track

- * Incident K- 8* 108
- * Ξ production ~3500
- * Ξ stop event ~70

*emulsion is moved spill by spill

-> emulsion mover

Emulsion mover, in readiness

Hirose, Hayata (Kyoto)

Ge detector; Hyperball-X

X-rays from Ξ -atom (Ag/Br) Ξ -Nucleus potential in the surface region

Closed position (for beam exposure)

Support frame: coming soon Assembling: ~April.

- 6 units of clover-type Ge detectors
- 4 Ge crystals per unit
- BGO for B.G. (π^0 & Compton) suppressor
- ~3% photo-peak efficiency at 350keV

Opened position (for emulsion exchange)

E07 Setup

K1.8 Beam Line @J-PARC

K⁻ beam & Beam Spectrometer.

*QQDQ + collimator *profile: X~40mm, Y~15mm *K⁻ purity: ~75%

Q12

D4

Matrix/Mass Triggers to reduce trigger rates

the charges and momentum are roughly selected in the online trigger by taking the matrix coincidence of the CH and the TOF,

KURAMA magnet (from downstream)

pole gap: $50cm \rightarrow 80cm (x \ 1.25)$ to compensate the reduction of emulsion ($2.6t \rightarrow 2.1t$)

Downstream drift chambers

DC2 (KL chamber) 1185 x 1185 XX'YY' 9mm spacing

DC3 (AIDA chamber) 1900 x 1280 XX'YY' 20 mm spacing

Test experiment in ELPH@Tohoku univ (June~July, 2014)

mass production of emulsion plates

Emulsion facility in Gifu-univ. (~100m²)

<Pouring room> Three flat stone bases , Hot bath Cutting machine <Drying room> Temp 30 °C and R.H. 75%. <Development room> 1200 liters' chemical solutions

Demonstration of gel pouring by dummy-gel (gelatin solution)

Left: vacuum chuck on flat base

Left-down: gel pouring

Right-down: storing on drying cabinet

performance of the 8th cycle of emulsion plate making

8 Mar.	Preparation	
9	Pouring 1st surface (18sheets)	
10		Pouring 1st surface (18sheets)
11	Surface coat (18sheets)	
12		Surface cost (in this)
13	Pouring 1	
14	Mainly MC students and under	∠na surface (18sheets)
15	Surface coat (18sheets)	
16		Surface coat (18sheets)
17	Final dry	
18	Cutting 36 sheets(710mm × 700mm) \rightarrow 144plates(350mm × 345mm)	

K.Nakazawa, K.T.Tint, R.Xu, J.Yoshida, M.K.Soe S.Kinbara, A.Mishina, H.Ito, Y.Endo and H.Kobayashi

Emulsion plates are stored in KAMIOKA mine until beam exposure To avoid cosmic-ray and gamma-ray **Emulsion analysis**

Scanning room in Gifu

*7 computer-controlled + 2 manual microscopes are in readiness. *Temperature(20 deg C) and humidity (65%) is stable

microscope-human interface software

Stage for Overall scanning with UNIOPT. CO.,Ltd

Some candidates of 3-vertexes were found

- E07 aims to collect 10 times' statistics of double hypernucleus of the previous experiment
 *A-dependence of ΛΛ interaction
 *ΞN interaction from twin hypernuclei / X-ray measurement
- Beam exposure is planed on 2015.
- However, construction of the detectors and analysis framework is gradually underway.